Прибор для измерения емкости конденсаторов. ESR метр своими руками — измеритель емкости конденсаторов

При ремонте или радиоконструировании часто приходится сталкиваться с таким элементом, как конденсатор. Его главной характеристикой является ёмкость. Из-за особенностей устройства и режимов работы выход из строя электролитов становится одной из основных причин неисправностей радиоаппаратуры. Для определения ёмкости элемента используются разные приборы для проверки. Их несложно приобрести в магазине, а можно изготовить и самому.

Физическое определение конденсатора

Конденсатор - электрический элемент, служащий для накопления заряда или энергии. Конструктивно радиоэлемент представляет собой две пластины, выполненные из токопроводящего материала, между которыми располагается слой диэлектрика. Токопроводящие пластины называются обкладками. Они не связаны между собой общим контактом, но при этом каждая имеет собственный вывод.

Конденсаторы имеют многослойный вид, в них слой диэлектрика чередуется со слоями обкладок. Они представляют собой цилиндр или параллелепипед с закруглёнными углами. Основной параметр электрического элемента - это ёмкость, единицей измерения которой является фарада (F, Ф). На схемах и в литературе радиодеталь обозначается латинской буквой C. После символа указывается порядковый номер на схеме и значение номинальной ёмкости.

Так как одна фарада - это довольно большая величина, то реальные значения ёмкости конденсатора значительно ниже. Поэтому при записи принято использовать условные сокращения:

  • П - пикофарада (pF, пФ);
  • Н - нанофарада (nF, нФ);
  • М - микрофарада (mF, мкФ).

Принцип работы

Принцип действия радиодетали зависит от вида электрической сети. При подключении к выводам обкладок источника постоянного тока носители заряда попадают на токопроводящие пластины конденсатора, где происходит их накопление. Вместе с тем на выводах обкладок появляется разность потенциалов. Её значение увеличивается до тех пор, пока не достигнет величины, равной источнику тока. Как только это значение выровняется, на обкладках перестаёт накапливаться заряд, а электрическая цепь разрывается.

В сети с переменным током конденсатор представляет собой сопротивление. Его величина связана с частотой тока: чем она выше, тем ниже сопротивление и наоборот. При воздействии на радиоэлемент переменной силы тока происходит накопление заряда. Со временем ток заряда уменьшается и пропадает полностью. Во время этого процесса на обкладках устройства концентрируются заряды разных знаков.

Диэлектрик, проложенный между ними, препятствует их перемещению. В момент смены полуволны происходит разряд конденсатора через нагрузку, подключённую к его выводам. Возникает ток разряда, то есть в электрическую цепь начинает поступать накопленная радиоэлементом энергия.

Конденсаторы применяются практически в любой электронной схеме. Они служат элементами фильтра для преобразования пульсаций тока и отсечения различных частот. Кроме этого, они компенсируют реактивную мощность.

Характеристики и виды

Измерения параметров конденсаторов связаны с нахождением величин их характеристик. Но среди них наиболее важной является ёмкость, которая обычно и измеряется. Эта величина обозначает количество заряда, которое может накопить радиоэлемент. В физике электроёмкостью называют величину, равную отношению заряда на любой обкладке к разности потенциалов между ними.

При этом ёмкость конденсатора зависит от площади обкладок элемента и толщины диэлектрика. Кроме ёмкости радиоприбор характеризуется также полярностью и величиной внутреннего сопротивления. Применяя специальные приборы, эти величины также можно измерить. Сопротивление устройства влияет на саморазряд элемента. Кроме этого, к основным характеристикам конденсатора относят:

Классифицируются конденсаторы по разным критериям, но в первую очередь их разделяют по типу диэлектрика. Он может быть газообразным, жидким и твёрдым. Чаще всего в качестве него используются стекло, слюда, керамика, бумага и синтетические плёнки. Кроме того, конденсаторы различаются по способности изменения величины ёмкости и могут быть:

Также в зависимости от назначения конденсаторы бывают общего и специального назначения. Первого вида приборы являются низковольтными, а второго - импульсными, пусковыми и т. д. Но независимо от вида и назначения принцип измерения их параметров идентичный.

Приборы для измерения

Для измерения параметров конденсаторов используются как специализированные приборы, так и общего применения. Измерители ёмкости по своему типу разделяют на два вида: цифровые и аналоговые. Специализированные устройства могут измерить ёмкость элемента и внутреннее его сопротивление. Простым тестером обычно диагностируется только пробой диэлектрика или большая утечка. Кроме этого, если тестер многофункциональный (мультиметр), то им можно измерить и ёмкость, но обычно предел его измерения невысокий.

Таким образом, в качестве прибора для проверки конденсаторов можно использовать:

  • ESR или RLC-метр;
  • мультиметр;
  • тестер.

При этом диагностику элемента прибором, относящемся к первому типу, можно проводить без выпаивания из схемы. Если же используется второй или третий тип, то элемент или хотя бы один из его выводов необходимо от неё отсоединить.

Использование ESR-метра

Измерение параметра ESR очень важно при исследовании конденсатора на работоспособность. Дело в том, что почти вся современная техника является импульсной, использующей в своей работе высокие частоты. Если эквивалентное сопротивление конденсатора велико, то на нём происходит выделение мощности, а это вызывает нагрев радиоэлемента, приводящий к его деградации.

Конструктивно специализированный измеритель представляет собой корпус с жидкокристаллическим экраном. В качестве его источника питания используется батарейка типа КРОНА. В приборе предусмотрено два разъёма разного цвета, к которым подключаются щупы. Красного цвета щуп считается положительным, а чёрного - отрицательным. Это сделано для того, чтобы можно было правильно проводить измерения полярных конденсаторов.

Перед измерением ESR сопротивления радиодеталь необходимо разрядить, иначе возможен выход прибора из строя. Для этого выводы конденсатора замыкаются сопротивлением порядка одного килоома на короткое время.

Непосредственно измерение происходит путём соединения выводов радиодетали со щупами прибора. В случае электролитического конденсатора необходимо соблюдать полярность, то есть соединять плюс с плюсом, а минус с минусом. После этого прибор включается, и через некоторое время на его экране появляются результаты измерения сопротивления и ёмкость элемента.

Следует отметить, что основная масса таких приборов изготавливается в Китае. В основе их действия лежит использование микроконтроллера, работой которого управляет программа. При измерении контроллер сравнивает сигнал, прошедший через радиоэлемент, с внутренним и на основании различий по сложному алгоритму выдаёт данные. Поэтому точность измерения таких приборов зависит в основном от качества комплектующих, используемых при их изготовлении.

При измерении ёмкости можно также воспользоваться измерителем иммитанса. По своему виду он похож на ESR-метр, но может дополнительно измерять индуктивность. Принцип его действия основан на прохождении тестового сигнала через измеряемый элемент и анализе полученных данных.

Проверка мультиметром

Мультиметром можно измерить почти все основные параметры, но точность этих результатов будет ниже, чем при использовании ESR-прибора. Измерение с помощью мультиметра можно представить следующим образом:

Если тестер выведет на экран значение OL или Overload, то это означает, что ёмкость слишком высока для измерения мультиметром или конденсатор пробит. Когда перед полученным результатом впереди будет стоять несколько нулей, предел измерения необходимо понизить.

Применение тестера

Если под рукой не окажется мультиметра, способного измерить ёмкость, то можно провести измерения подручными средствами. Для этого понадобятся резистор, блок питания с постоянным уровнем выходного сигнала и устройство, измеряющее напряжение. Методику измерения лучше рассмотреть на конкретном примере.

Пусть будет конденсатор, ёмкость которого неизвестна. Чтобы её узнать, понадобится выполнить следующие действия:

Такой алгоритм измерения нельзя назвать точным, но общее представление о ёмкости радиоэлемента он вполне способен дать.

Если есть познания в радиолюбительстве, можно собрать прибор для измерения ёмкости своими руками. Существует множество схемотехнических решений разного уровня сложности. Многие из них основаны на измерении частоты и периода импульсов в цепи с измеряемым конденсатором. Такие схемы сложны, поэтому проще использовать измерения, основанные на вычислении реактивного сопротивления при прохождении импульсов фиксированной частоты.

В основе схемы такого прибора лежит мультивибратор, частота работы которого определяется ёмкостью и сопротивлением резистора, подключёнными к выводам D1.1 и D1.2. С помощью переключателя S1 устанавливается диапазон измерения, то есть изменяется частота. С выхода мультивибратора импульсы поступают на усилитель мощности и далее на вольтметр.

Калибровка прибора проводится на каждом пределе с помощью эталонного конденсатора. Чувствительность устанавливается резистором R6.

Это измеритель ESR (ЭПС) + измеритель ёмкости конденсаторов.

Прибор измеряет ЭПС (эквивалентное последовательное сопротивление) конденсатора и его ёмкость измеряя время зарядки постоянным током. В роли источника тока выступает управляемый стабилитрон TL431 и p-n-p транзистор.

Ёмкость меряет в пределах 1 - 150 000мкФ, ESR - до 10 Ом.

Вся конструкция была успешно позаимствована с сайта pro-radio, где Олег Гинц (он же GO и он же автор конструкции) выложил свою работу на общее обозрение. Эта конструкция была повторена не один десяток, а то и сотню раз, опробована и одобрена народом. При правильной сборке остаётся лишь выставить поправочные коэффициенты на ёмкость и сопротивление.

Прибор собран на микроконтроллере PIC16F876A, распространённом ЖК-дисплее типа WH-1602 на базе HD44780 и рассыпухе. Контроллер можно заменить на PIC16F873 - в конце статьи есть прошивки на обе модели.

Ёмкость и ESR конденсаторов около 1000 мкф измеряет за доли секунды. Так же с большой точностью измеряет малое сопротивление. То есть можно пользоваться, когда необходимо сделать шунт для амперметра:)

Так же хорошо меряет ёмкость внутрисхемно. Только, если есть индуктивности - может врать. В этом случае выпаиваем элемент.

Корпус, Z-42, в качестве коннектора подключения щупов по четырёхпроводной схеме выбрал старый, добрый, надёжный USB 2.0 порт.

Старый, советский, подсохший электролитический конденсатор.

А это нерабочий конденсатор с цепи питания процессора на материнской плате.

Как работает.

Конденсатор предварительно разряжается, включается источник тока 10 мА, оба входа измерительного усилителя подключаются на Сх, делается задержка порядка 3.6 мкс для устранения влияния звона в проводах. Одновременно через ключи DD2.3 || DD2.4 заряжается конденсатор С1, который собственно и запоминает самое большое напряжение, которое было на Cx. Следующим шагом размыкаются ключи DD2.3 || DD2.4 и выключается источник тока. Инвертирующий вход ДУ остается подключенным к Сх, на котором после выключения тока напряжение падает на величину 10мА*ESR. Вот собственно и все - далее спокойно можно мерять напряжение на выходе ДУ - там два канала, один с КУ=330 для предела 1 Ом и КУ=33 для 10 Ом.

На форуме-источнике, где выложена печатная плата и прошивки - печатка была двухсторонняя. С одной стороны - все дорожки, с другой - сплошной слой земли и просто дырки под компоненты. У меня такого текстолита на момент сборки не было, поэтому пришлось делать землю проводами. Так или иначе, особых сложностей это не доставило и на работоспособности и точности прибора никак не отразилось.

На последней картинке - источник тока, источник отрицательного напряжения и силовой ключ.

Плата простая, настройка - ещё проще.

Первое включение - проверяем наличие +5V после 78L05 и -5V (4.7V) на выходе DA4 (ICL7660). Подбором R31 добиваемся нормальной контрастности на индикаторе.
Включение прибора при нажатой кнопке Set переводит его в режим установки корректирующих коэффициентов. Их всего три - для каналов 1 Ом, 10 Ом и для ёмкости. Изменение коэффициентов кнопками + и -, запись в EEPROM и перебор - той же кнопкой Set.
Имеется так же отладочный режим - в этом режиме на индикатор выводятся измеренные значения без обработки - для емкости - состояние таймера (примерно 15 отсчетов на 1 мкФ) и оба канала измерения ESR (1 шаг АЦП=5V/1024). Переход в отладочный режим - при нажатой кнопке "+"
И еще один момент - установка нуля. Для этого замыкаем вход, нажимаем и удерживаем кнопку "+" и с помощью R4 добиваемся минимальных показаний (но не нулевых!) одновременно по обоим каналам. Не отпуская кнопку "+", нажимаем Set - на индикатор выведется сообщение о сохранении U0 в EEPROM.
Далее измеряем образцовые сопротивления 1 Ом (или меньше), 10 Ом и емкость (которой доверяете) , определяем поправочные коэффициенты. Прибор выключаем, включаем при нажатой кнопке Set и устанавливаем к-ты соответственно результатам измерений.
Плата в три этапа, вид сверху:

Схема прибора:

Привожу небольшой список FAQ, сформировавшийся на форуме-источнике.

Q. При подключении резистора в 0,22 Ома - пишет - 1 с копейками, при подключении резистора в 2,7 Ом - пишет ESR > 12.044 Ом.

A. Отклонения могут быть, но в пределах 5-10%, а тут в 5 раз. Надо проверять аналоговую часть, виновниками могут быть в порядке убывания вероятности:

источник тока,
дифф. усилитель
ключи
Начните с источника тока. Он должен выдавать 10 (+/-0.5) мА, его проверить можно либо в динамике осциллографом, нагрузив на 10 ом - в импульсе должно быть не более 100 мВ. Если ловить иголки не хочется - проверьте в статике - уберите перемычку (нулевое сопротивление) между RC0 и R3, нижний конец R3 на землю, и включаете миллиамперметр между коллектором VT1 и землей (правда возможно будет мешать VT2 - тогда при проверке коллектор VT1 лучше отключить от схемы).

На деле решение было такое: -"Перепутал я сослепу 102 и 201 - и вместо 1 килоома забубенил 200 ом."

Q. Возможна ли замена TL082 на TL072?

A. К ОУ особых требований нет кроме полевиков на входе, с TL072 должно работать.

Q. Зачем на вашей печатке сделаны два входных разъёма: один подключен к диодам-транзисторам, а другой - к DD2?

A. Чтобы скомпенсировать падение напряжения на проводах, тестируемый элемент лучше подключать по 4-х проводной схеме, поэтому и разъем 4-х контактный, а провода объединяются вместе уже на крокодилах.

Q. На холостом ходу отрицательное напряжение -4 Вольта и сильно зависит от типа конденсатора между 2 и 4 выводами ICL 7660. С обычным электролитом всего -2 В было.

A. После замены на танталовый, выдранный с 286 материнки стало -4 В.

Q. Индикатор WH-1602 не работает или греется контроллер индикатора.

A. Неверно указана цоколевка индикатора WINSTAR WH-1602 в плане разводки питания, перепутаны 1 и 2 выводы! На alldatasheet 1602L, который совпадает с цоколевкой, указанной Winstar и на схеме. Мне же попался 1602D - вот он имеет "спутанные" 1 и 2 выводы.

Надпись Cx ---- выводится в следующих случаях:

При измерении емкости срабатывает тайм-аут, т.е. за отведенное время измерения прибор не дождался переключения обоих компараторов. Это происходит при измерении резисторов, закороченных щупах, либо когда измеряемая емкость >150000 мкФ и т.п.
Когда напряжение, измеренное на выходе DA2.2 превысит 0x300 (это показания АЦП в 16-ричном коде), процедура измерения емкости не выполняется и на индикатор также выводится Cx ----.
При разомкнутых щупах (или R>10 Ом) так и должно быть.

Знак ">" в строке ESR появляется при превышении напряжения на выходе DA2.2 0x300 (в единицах АЦП)

Подводя итог: травим плату, без ошибок паяем элементы, прошиваем контроллер - и прибор работает.

Спустя пару лет решил сделать прибор автономным. По мотивам зарядного устройства для смартфонов был сделан step-up преобразователь на 7 В выходного напряжения. Можно было бы сразу на 5 В, но так как плата закреплена в корпусе на клей - отдирать не стал, да и падение напряжения на КРЕН7805 в два Вольта - небольшая потеря:)

Мой новый конструктор выглядел так:

Маленькая платка преобразователя была "обута" в термоусадку, произведена распайка всех проводов, разъём для кроны нам больше не понадобится. Просто дырка в корпусе смотрится не очень, поэтому мы его оставим, но провода откусим. Внутри корпуса не осталось места для аккумулятора, поэтому я приклеил батарею на тыльную сторону прибора и приделал ему ножки, чтобы в рабочем состоянии он не лежал на аккумуляторе.

На лицевой стороне вырезал отверстия для кнопки питания и светодиода индикации успешной зарядки. Индикацию заряда аккумулятора не делал.

Потом решил, что раз пошла такая пьянка неплохо было бы видать экран в темноте, на случай ремонта при свечах, если отключат свет, а работать хочется:)

Но это уже после того, как появился более понтовый RLC-2. Подробнее об этом приборе в этой статье.

Почти два года назад купил цифровой измеритель ёмкости, взял, можно сказать, первое что попалось. Так сильно меня утомила неспособность мультиметра Маstech MY62 измерять ёмкость конденсаторов более 20 микрофарад, да и меньше 100 пикофарад он правильно не мерил. Понравилось в СМ-7115А два фактора:

  1. Измеряет весь востребованный диапазон
  2. Компактность и удобство

Заплатил 750 рублей. Искренне считал, что он этих денег не стоит, а цену «взвинтили» по причине полного отсутствия конкурентной продукции. Страна производитель - конечно Китай. Опасался, что будет «привирать», больше того был в этом уверен - однако напрасно.

Ёмкостемер и провода к нему были упакованы в полиэтилен, каждый в свою оболочку и вложены в коробку из толстого картона, свободное пространство заполнено пенопластом. Так же в коробке находилась инструкция на английском языке. Габаритные размеры прибора 135 х 72 х 36 мм, вес 180 грамм. Цвет корпуса чёрный, передняя панель с сиреневым отливом. Имеет жидкокристаллический индикатор, девять диапазонов измерения, два положения отключения питания, регулятор установки нуля, 15 сантиметровые, разного цвета (красный - чёрный) провода, при помощи которых подключается к прибору измеряемый конденсатор, заканчиваются зажимами типа «крокодил», а гнёзда на корпусе прибора, для их подключения, замаркированы цветным обозначением соответствующей полярности, дополнительно возможно измерение и без них (что увеличивает точность), для чего имеются два продолговатых гнезда, которые подписаны символом измеряемого конденсатора. Используется батарея питания на 9 вольт, имеется функция автоматической индикации её разряда. Жидкокристаллический индикатор трёхразрядный +1 знак после запятой, заявленный производителем диапазон измерения составляет от 0,1 пФ до 20000 мкФ, с возможностью юстировки на диапазоне измерения от 0 до 200 пФ, для установки нуля, в пределах +/- 20 пФ, время одного измерения 2-3 секунды.

Таблица допустимых погрешностей при измерениях, индивидуально по диапазонам. Представлена изготовителем.

На задней половине корпуса имеется интегрированная подставка. Она даёт возможность более компактно разместить измеритель на рабочем месте и изменяет в лучшую сторону обзор жидкокристаллического индикатора.

Батарейный отсек выполнен полностью автономно, для смены элемента питания достаточно сдвинуть в сторону его крышку. Удобство из разряда неприметных, когда оно есть.

Для того чтобы снять заднюю крышку корпуса достаточно открутить один саморез. Самый массивный компонент печатной платы - предохранитель на 500 мА.

В основу работы измерительного прибора положен метод двойного интегрирования. Собран он на логических счётчиках HEF4518BT - 2 шт, ключе HEF4066BT, десятичном счётчике с дешифратором HCF4017 и смд транзисторах: J6 - 4 шт, М6 - 2 шт.

Открутив ещё шесть саморезов можно увидеть другую сторону печатной платы. Переменный резистор, при помощи которого производится установка на «0» стоит так, что его можно легко заменить при необходимости. Слева контакты для подключения измеряемого конденсатора, те, что выше, для непосредственного подключения (без проводов).

Прибор выставляется на нулевую точку отсчёта не сразу, но выставленный показание удерживает. С отключёнными проводами сделать это гораздо проще.

Для наглядной демонстрации разницы в точности измерения при различный способах измерений (с проводами и без) взял конденсаторы малой ёмкости с заводской маркировкой - 8,2 пФ

Видеообзор прибора

Без проводов С проводами
№1 8 пФ 7,3 пФ
№2 7,6 пФ 8,3 пФ
№3 8,1 пФ 9,3 пФ

Всё наглядно, однозначно без проводов измерения будут точнее, хотя и расхождение-то практически в пределах 1 пФ. Так же неоднократно производил измерения конденсаторов стоящих на платах - показания замера исправных вполне адекватные согласно указанного на них номинала. Если не быть сильно большим придирой, то вполне можно сказать, что добротность измерения у прибора достаточно высокая.

Недостатки прибора

  • установка на ноль производится не сразу,
  • у лепестков контактов, для измерения без проводов, отсутствует упругость, после разжатия в исходное положение не возвращаются,
  • измеритель не укомплектован калибровочной ёмкостью.

Выводы

В общем и целом прибором доволен. Измеряет хорошо, компактен (легко помещается в карман), так что на радиорынке беру не то, что дают, а что нужно. Планирую, как будет время, доработать: заменить потенциометр и контакты непосредственного измерения. Его схему, или что-то похожее, можно поискать в разделе . Рассказал «всё как есть», а вы уже решайте сами, стоит ли пополнять домашнюю лабораторию таким прибором. Автор - Babay.

Измерительная техникаПростой измеритель Регулировка содержится в установке максимальных границ на каждом диапазонес помощью переключаемых резисторов (47 К) в качестве которых лучшепоставить подстроечники....

Для схемы "Измеритель емкости на логическом элементе"

Для схемы "ПРИСТАВКА-ИЗМЕРИТЕЛЬ LC К ЦИФРОВОМУ ВОЛЬТМЕТРУ"

Измерительная техникаПРИСТАВКА-ИЗМЕРИТЕЛЬ LC К ЦИФРОВОМУ ВОЛЬТМЕТРУ Цифровой измерительный прибор в лаборатории радиолюбителя теперь не редкость. Однако не часто им можно измерить параметры конденсаторов и катушек индуктивности, более того если это мультиметр. Описываемая в этом месте простая приставка предназначена для использования совместно с мультиметрами или цифровыми вольтметрами (например, М-830В, М-832 и им подобными), не имеющими режима измерения параметров реактивных элементов.Для измерения и индуктивности с помощью несложной приставки использован принцип, подробно описанный в статье А. Степанова "Простой LC-метр" в "Радио" № 3 за 1982 г. Предлагаемый измеритель несколько упрощен (вместо генератора с кварцевым резонатором и декадного делителя частоты применен мультивибратор с переключаемой частотой генерации), но он позволяет с достаточной для практики точностью измерять емкость в пределах 2 пф...1 мкф и индуктивность 2 мкГн... Регулятор мощности на тс122 25 1 Гн. Кроме того, в нем вырабатывается напряжение прямоугольной формы с фиксированными частотами 1 МГц, 100 кГц, 10 кГц, 1 кГц, 100 Гц и регулируемой амплитудой от 0 до 5 В, что расширяет область применения устройства. Задающий генератор измерителя (рис. 1) выполнен на элементах микросхемы DD1 (КМОП), частоту на его выходе изменяют с помощью переключателя SA1 в пределах 1 МГц - 100 Гц, подключая конденсаторы С1-С5. С генератора сигнал поступает на электронный ключ, собранный на транзисторе VT1. Переключателем SA2 выбирают режим измерения "L" или "С". В показанном на схеме положении переключателя приставка измеряет индуктивность. Измеряемую катушку индуктивности подключают к гнездам Х4, Х5, конденсатор - к ХЗ, Х4, а вольтметр - к гнездам Х6, Х7. При работе вольтметр устанавливают в режим измерения постоянного напряжен...

Для схемы "ИЗМЕРИТЕЛЬ ЕМКОСТИ"

Измерительная техникаИЗМЕРИТЕЛЬ Электролитические конденсаторы из-за понижения емкости или значительного тока утечки нередко являются причиной неисправности радиоаппаратуры. Электронный тестер, схема которого приведена на рисунке, позволяет определить целесообразность дальнейшего использования конденсатора, явившегося предположительно причиной неисправности. Совместно с многопредельным авометром (на пределе 5 В) или отдельной измерительной головкой (100 мкА), тестером, можно измерять емкости от 10 мкф до 10 000 мкф, а также качественно определить степень утечки конденсаторов.В основе работы тестера лежит принцип контроля остаточного заряда на полюсах конденсатора, который был заряжен током определенной величины в течение определенного времени. Например, емкость 1 Ф. получавшая заряд током 1 А в течение 1 с, будет иметь разность потенциалов на обкладках, равную 1 В. Практически постоянный ток заряда испытуемого конденсатора С обеспечивается генератором тока, собранным на транзисторе V5. Блок питания на тиристорах схемы На первом диапазоне можно измерять до 100 мкф (ток заряда конденсатора 10 мкА), на втором - до 1000 мкф (100 мкА) и на третьем - до 10 000 мкф (1мА). Время заряда Сx выбрано равным5 с и отсчитывается либо автоматически с помощью реле времени либо по секундомеру.Перед началом измерения в положении переключателя S2 "Разряд" потенциометром R8 устанавливают баланс моста, образованного базово-эмиттерными переходами транзисторов V6 и V7, резисторами R8, R9, R10 и диодами V3. V4 , используемыми в качестве низковольтного источника опорного напряжения. Затем переключателем S1 выбирают ожидаемый диапазон измерения емкости. Если конденсатор не маркирован или потерял часть емкости, измерения начинают в первом диапазоне. Переклю...

Для схемы "УНИВЕРСАЛЬНОЕ СОГЛАСУЮЩЕЕ УСТРОЙСТВО"

АнтенныУНИВЕРСАЛЬНОЕ СОГЛАСУЮЩЕЕ УСТРОЙСТВОУстройство предназначено для согласования передатчика с различными типами антенн, как имеющими коаксиальный фидер, так и с открытым входом (типа "длинный луч" и т. д.). Применение устройства позволяет достичь оптимального согласования передатчика на всех любительских диапазонах, более того при работе с антенной случайной длины. Встроенный измеритель КСВ может быть использован при настройке и регулировке антенно-фидерных систем, а также как индикатор мощности, отдаваемой в антенну.Согласующее устройство работает в диапазоне 3-30 МГц и рассчитано на мощность до 50 Вт. При соответствующем увеличении электрической прочности деталей вероятный уровень мощности может быть повышен.Принципиальная схема согласующего устройства показана на рис.1. Он включает в себя два функциональных узла: собственно устройство согласования (катушки L1 и L2. конденсаторы С6-С9, переключатели В2 и ВЗ) и измеритель КСВ, собранный по схеме балансного ВЧ моста.Устройство смонтировано на шасси. Т160 схема регулятора тока На переднюю панель выведены все органы настройки, на ней установлен и стрелочный индикатор КСВ. На задней стенке шасси укреплены два высокочастотных разъема для подключения выхода передатчика и антенн с коаксиальным фидером, а также проходной изолятор с зажимом для антенн типа "длинный луч" и т. п. Монтаж КСВ выполнен на печатной плате (см. рис. 2).Конденсаторы С1 и С2 - воздушные или керамические с начальной емкостью 0,5-1,5 пФ. ВЧ трансформатор Тр1 намотан на кольцо из феррита М30ВЧ2 размерами 12Х6Х Х4,5 мм. Вторичная обмотка содержит 41 виток прово...

Для схемы "РАДИОСТАНЦИЯ НА ТРЕХ ТРАНЗИСТОРАХ"

Радиопередатчики, радиостанцииРАДИОСТАНЦИЯ НА ТРЕХ ТРАНЗИСТОРАХРадиостанция предназначена для проведения двухсторонней связи в диапазоне 27 МГц с амплитудной модуляцией. Она собрана по трансиверной схеме. Каскад на транзисторе VT1 служит и приемником, и передатчиком. Усилитель на транзисторах VT1 и VT2 в режиме приема усиливает сигнал, выделенный приемником, а в режиме передачи модулирует несущую. При монтаже особое внимательность следует обратить на расположение конденсаторов С10 и С11. Они применяются для предотвращения самовозбуждения. Если самовозбуждение все же возникает, то нужно подключить дополнительно ещё несколько конденсаторов той же емкости. О настройке. Она очень проста. Сначала при помощи частотомера выставляется частота передатчика, а потом настраивается приемник прочий радиостанции по максимальному подавлению шума и наибольшей громкости сигнала. Симистор тс112 и схемы на нем Катушкой L1 настраивается передатчик, а катушкой L2 - приемник.Tp1 - любой малогабаритный выходной трансформатор. Ba1 - любой подходящий по размеру динамик с сопротивлением обмотки 8 - 10 Ом. Др1 - ДПМ-0,6 или самодельный: 75 - 80 витков ПЭВ 0,1 на резисторе МЛТ 0,5 Вт - 500 кОм. Остальные детали - любого типа. Катушки намотаны на каркасах диаметром 8 мм и содержат по 10 витков провода ПЭВ 0,5. =Печатная и монтажная платы - на рис. 2Печатная и монтажная платы - на рис. 2ТЕХНИЧЕСКИЕ ДАННЫЕ Напряжение питания - 9 - 12 вольт Дальность связи на открытой местности - приблизительно 1 км. Потребляемый ток: приемника -15 мА передатчика - 30 мА. Антенна телескопическая - 0,7 - 1м. Размеры корпуса - 140 х 75 х 30 мм.Н.МАРУШКЕВИЧ г.Минск...

Для схемы "Определитель идентичности веществ"

Прибор предназначен для проверки идентичности различных веществ: жидких, сыпучих, органических и минеральных, Прибор позволяет сравнивать одинаковые вещества и обнаруживать в них примеси.Основное назначение прибора -экспресс анализ, проводимый по относительным показаниям стрелочного индикатора.В стойке корпуса имеются два отверстия, в которые вставляют пробирки. Одна пробирка - с образцовым веществом, другая - с проверяемым. Объем веществ в обеих пробирках равен 30 мл. Каждую пробирку обхватывают пластины измерительных С1 и С2. При идентичности обоих веществ, емкость обоих будет равной и стрелка индикатора останется на контрольной отметке.Если же одно из веществ содержит примеси, стрелка отклонится от отметки.По углу отклонения стрелки можно судить о процентном содержании примесей.Основа прибора (рис. Электросхема насоса азовец 1) - симметричный мультивибратор, выполненный на транзисторах VT2 и VT3. Конденсаторы С1 и С2 - измерительные. Если их равны, скважность импульсов на коллекторах транзисторов мультивибратора одинаковая. Но скважность импульсов может быть полностью определенной, -ее задают переменным резистором R3. Тогда стрелка индикатора РА1, подключенного к резисторам нагрузки мультивибратора через эмиттерные повторители на транзисторах VT1 и VT4, будет находиться на "нулевом" делении -точке отсчета прибора, либо на любом другом делении, выбранном произвольно (точность определения идентичности повышается, если стрелка индикатора пребывает на правой половине шкалы). За "нулевое" принято среднее деление шкалы.Когда же между пластинами окажутся отличающиеся по составу вещества, емкость конденсаторов буд...

Для схемы "ИЗМЕРИТЕЛЬ МОЩНОСТИ"

Измерительная техникаИЗМЕРИТЕЛЬ МОЩНОСТИ Для уменьшения помех работающим в эфире радиостанциям при налаживании передающих устройств применяют эквивалент антенны. Его нетрудно превратить в измеритель выходной мощности передатчика. Принципиальная схема измерителя мощности передающей KB аппаратуры приведена на рис.1. Он состоит из нагрузочного резистора R1, делителя напряжения на резисторах R2 и R3 (коэффициент деления 10). а также высокочастотного вольтметра на диоде VI. Поскольку сопротивление резистора R1 понятно, то выделяемую на нем мощность легко вычислить по формуле Р =U2/R1. Здесь U - эффективное напряжение на нагрузке.В качестве нагрузочного резистора RI используется резистор ТВО-60 мощностью 60 Вт и сопротивлением 75 Ом.Р, ВтU, BОтметка шкалымикроамперметра18.654.5212,36.4315,07,7417.99.2519,410.01027.414.02038.720.03047.524.54054.728.05061.231.56066.334.07072,537.08077.540.09082.242.510086,545.0150106.055 .0200122.563,0250137,070,5300150,077.0350162.083.5400173.089.0450184.095,0500194,0100,0Он помещен в латунный корпус, являющийся экраном (рис. 2). На одной из стенок корпуса установлен коаксиальный разъем. Резисторы R2 и R3 - TBO-0,5. Если резистора ТВО-60 нет. то можно ис...

Для схемы "Активный фильтр нижних частот"

Узлы радиолюбительской техникиАктивный фильтр нижних частотВ. ПОЛЯКОВ (RA3AAE)На рис. 1 приведена схема активного фильтра нижних частот с частотой среза 3 Кгц, который может использоваться в микрофонном усилителе передатчика или в приемнике прямого преобразования. Фильтр содержит два одинаковых усилительных каскада на транзисторах Т1 и Т2 и эмиттерный повторитель на транзисторе Т3. рис. 1Частотная характеристика первого каскада формируется цепью обратной связи R4C3C4. Фазовые соотношения в цепи таковы, что на частотах 2-3 кгц получается некоторый подъем усиления, а на частотах выше 3 кгц усиление резко падает из-за сильной отрицательной обратной связи. На невысоких частотах емкостное сопротивление конденсаторов С3 и С4 велико и обратная связь практически отсутствует. Пассивное Т-образное звено R1R2C2 компенсирует подъем усиления и вызывает ещё большее ослабление частот выше 3 кгц. Резистор R3 создает смещение и стабилизирует режим каскада. Схемы таймер для периодического включения нагрузки Второй каскад собран по аналогичной схеме. Эмиттерный повторитель устраняет влияние нагрузки на параметры фильтра. Если фильтр работает на высокоомнуго нагрузку (более 5 ком), то эмиттерный повторитель можно исключить, а выходной сигнал снять с коллектора Т2. Нормированная частотная характеристика устройства приведена на рис.2. Во избежание нелинейных искажений входной сигнал не должен превышать 10 мв. Амплитуда сигнала при этом достигает 2 в, то есть достаточна для непосредственной подачи, например, на полупроводниковый балансный модулятор. рис. 2Фильтр сравнительно некритичен к параметру входящих в него резисторов и конденсаторов, поэтому в нем можно применять детали с допуском +-10%. Вместо указанных на схеме можно использовать любые низкочастотные транзисторы с Вст=50-100. При правильно выполненном монтаже налаживания фильтра...

Для схемы "ПРОСТОЙ БЛОКИРАТОР ТЕЛЕФОННОГО НАБОРА"

ТелефонияПРОСТОЙ БЛОКИРАТОР ТЕЛЕФОННОГО НАБОРАД.ПАНКРАТЬЕВ 700198, г.Ташкент, Куйлюк-массив-4, 28 - 10.Иногда бывает надобно исключить вероятность набора номера с определенного телефонного аппарата (ТА), например при параллельном включении. Предлагаю релейный блокиратор телефонного набора (БТН), отличающийся простотой и надежностью. Принцип действия БТН основан на обеспечении протекания постоянной составляющей тока линии ("удержании" линии) при наборе номера. Обратимся к принципиальной схеме устройства, приведенной на рисунке. В начальном состоянии цепь телефонного аппарата (ТА) разомкнута, и реле К1 обесточено. При поднятии трубки ТА реле срабатывает под действием протекающего через его обмотку тока, контакты К1.1 замыкаются и подключают к линии цепь VD1, VD2, С3, С4, RI. Конденсаторы заряжаются до некоторого уровня напряжения, соответствующего стационарному состоянию устройства. Постоянные времени выбраны таким образом, что при попытке набора номера (при периодическом размыкании цепи ТА со стандартной частотой 10 Гц) реле К1 сохраняет свое состояние, а протекание импульсного зарядного тока через конденсаторы C3, С4 обеспечивает удержание" линии, т.е. Регулятор мощности на тс122-20 набор номера с ТА, подключенного через БТН, становится невозможным. В диапазоне звуковых частот реактивное сопротивление конденсаторов переменному току мало, и они не оказывают влияния на работу ТА при разговоре. Уровень напряжения переменной составляющей ограничен значением 1,8 В, соответствующим напряжению стабилизации встречно-параллельно включенных стабистоpoв VDl,VD2. При отбое реле К1 отпускает, и устройство возвращается в первоначальное состояние. Резистор R1 служит для разряда C3, С4. БТН не препятствует прохождению сигнала вызова на ТА из-за небольшого реактивного сопротивления...

Самодельные измерительные приборы

В. ВАСИЛЬЕВ, г. Набережные Челны
Радио, 1998 год, №4

Тот, кто занимается ремонтом бытовой или промышленной радиоаппаратуры, знает, что исправность конденсаторов удобно проверять без их демонтажа. Однако многие измерители емкости конденсаторов такой возможности не предоставляют. Правда, одна подобная конструкция была описана в . Она имеет небольшой диапазон измерения, нелинейную шкалу с обратным отсчетом, что снижает точность. При проектировании же нового измерителя решалась задача создания прибора с широким диапазоном, линейной шкалой и прямым отсчетом, чтобы можно было пользоваться им, как лабораторным. Помимо этого, прибор должен быть диагностическим, т. е. способным проверять и конденсаторы, зашунтированные р-n переходами полупроводниковых приборов и сопротивлениями резисторов.

Схема прибора

Принцип работы прибора таков. На вход дифференциатора, в котором проверяемый конденсатор используется в качестве дифференцирующего, подается напряжение треугольной формы. При этом на его выходе получается меандр с амплитудой, пропорциональной емкости этого конденсатора. Далее детектор выделяет амплитудное значение меандра и выдает постоянное напряжение на измерительную головку.

Амплитуда измерительного напряжения на щупах прибора примерно 50 мВ, что недостаточно для открывания р-n переходов полупроводниковых приборов, поэтому они не оказывают своего шунтирующего действия.

Прибор имеет два переключателя. Переключатель пределов "Шкала" с пятью положениями: 10 мкФ, 1 мкФ, 0,1 мкФ, 0,01 мкФ, 1000 пФ. Переключателем "Множитель" (Х1000, х10О, х10, Х1) меняется частота измерения. Таким образом, прибор имеет восемь поддиапазонов измерения емкости от 10 000 мкФ до 1000 пФ, что практически достаточно в большинстве случаев.

Генератор треугольных колебаний собран на ОУ микросхемы DA1.1, DA1.2, DA1.4 (рис. 1). Один из них, DA1.1, работает в режиме компаратора и формирует сигнал прямоугольной формы, который поступает на вход интегратора DA1.2. Интегратор преобразует прямоугольные колебания в треугольные. Частота генератора определяется элементами R4, С1 - С4. В цепи обратной связи генератора стоит инвертор на ОУ DA1.4, который обеспечивает автоколебательный режим. Переключателем SA1 можно устанавливать одну из частот измерения (множитель): 1 Гц (Х1000), 10Гц(х10О), 10ОГц(х10), 1 кГц(Х1).

ОУ DA2.1 - повторитель напряжения, на его выходе сигнал треугольной формы амплитудой около 50 мВ, который и используется для создания измерительного тока через проверяемый конденсатор Сх.

Так как емкость конденсатора измеряется в плате, на нем может находиться остаточное напряжение, поэтому для исключения повреждения измерителя параллельно его щупам подключены два встречно-параллельных диода моста VD1.

ОУ DA2.2 работает как дифференциатор и выполняет роль преобразователя ток - напряжение. Его выходное напряжение:

Uвых=(Rl2...R16)·IBX=(Rl2...Rl6)Cx-dU/dt.

Например, при измерении емкости 100 мкФ на частоте 100 Гц получается: Iвх=Cx·dU/dt=100-100MB/5MC = 2MA, Uвых= R16 ·lBX= 1 кОм · мА= 2 В.

Элементы R11, С5 - С9 необходимы для устойчивой работы дифференциатора. Конденсаторы устраняют колебательные процессы на фронтах меандра, которые делают невозможным точное измерение его амплитуды. В результате на выходе DA2.2 получается меандр с плавными фронтами и амплитудой, пропорциональной измеряемой емкости. Резистор R11 также ограничивает входной ток при замкнутых щупах или при пробитом конденсаторе. Для входной цепи измерителя должно выполняться неравенство:

(3...5)CxR1<1/(2f).

Если это неравенство не выполнено, то за половину периода ток IBX не достигает установившегося значения, а меандр - соответствующей амплитуды, и возникает погрешность в измерении. Например, в измерителе, описанном в , при измерении емкости 1000 мкФ на частоте 1 Гц постоянная времени определяется как

Сх·R25 = 10ОО мкФ - 910 Ом = 0,91 с.

Половина же периода колебаний Т/2 составляет лишь 0,5 с, поэтому на данной шкале измерения окажутся заметно нелинейными.

Синхронный детектор состоит из ключа на полевом транзисторе VT1, узла управления ключом на ОУ DA1.3 и накопительного конденсатора С10. ОУ DA1.2 выдает управляющий сигнал на ключ VT1 во время положительной полуволны меандра, когда его амплитуда установлена. Конденсатор С10 запоминает постоянное напряжение, выделенное детектором.

С конденсатора С10 напряжение, несущее информацию о величине емкости Сх, через повторитель DA2.3 подается на микроамперметр РА1. Конденсаторы С11, С12 - сглаживающие. С движка переменного резистора калибровки R22 снимается напряжение на цифровой вольтметр с пределом измерения 2 В.

Источник питания (рис. 2) выдает двухполярные напряжения ±9 В. Опорные напряжения образуют термостабильные стабилитроны VD5, VD6. Резисторами R25, R26 устанавливают необходимую величину выходного напряжения. Конструктивно источник питания объединен с измерительной частью прибора на общей монтажной плате.

В приборе использованы переменные резисторы типа СПЗ-22 (R21, R22, R25, R26). Постоянные резисторы R12 - R16 - типа С2-36 или С2-14 с допустимым отклонением ±1%. Сопротивление R16 получено соединением последовательно нескольких подобранных резисторов. Сопротивления резисторов R12 - R16 можно использовать и других типов, но их надо подобрать с помощью цифрового омметра (мультиметра). Остальные постоянные резисторы - любые с мощностью рассеяния 0,125 Вт. Конденсатор С10 - К53- 1А, конденсаторы С11 - С16 - К50-16. Конденсаторы С1, С2 - К73-17 или другие метал-лопленочные, СЗ, С4 - КМ-5, КМ-6 или другие керамические с ТКЕ не хуже М750, их необходимо также подобрать с погрешностью не более 1%. Остальные конденсаторы - любые.

Переключатели SA1, SA2 - П2Г-3 5П2Н. В конструкции допустимо применить транзистор КПЗОЗ (VT1) с буквенными индексами А, Б, В, Ж, И. Транзисторы VT2, VT3 стабилизаторов напряжения могут быть заменены другими маломощными кремниевыми транзисторами соответствующей структуры. Вместо ОУ К1401УД4 можно использовать К1401УД2А, но тогда на пределе "1000 пФ" возможно появление ошибки из-за смещения входа дифференциатора, создаваемого входным током DA2.2 на R16.

Трансформатор питания Т1 имеет габаритную мощность 1 Вт. Допустимо использовать трансформатор с двумя вторичными обмотками по 12 В, но тогда необходимо два выпрямительных моста.

Для настройки и отладки прибора потребуется осциллограф. Неплохо иметь частотомер для проверки частот генератора треугольных колебаний. Нужны будут и образцовые конденсаторы.

Прибор начинают настраивать с установки напряжений +9 В и -9 В с помощью резисторов R25, R26. После этого проверяют работу генератора треугольных колебаний (осциллограммы 1, 2, 3, 4 на рис. 3). При наличии частотомера измеряют частоту генератора при разных положениях переключателя SA1. Допустимо, если частоты отличаются от значений 1 Гц, 10 Гц, 100 Гц, 1 кГц, но между собой они должны отличаться точно в 10 раз, так как от этого зависит правильность показаний прибора на разных шкалах. Если частоты генератора не кратны десяти, то необходимой точности (с погрешностью 1%) добиваются подбором конденсаторов, подключаемых параллельно конденсаторам С1 - С4. Если емкости конденсаторов С1 - С4 подобраны с необходимой точностью, можно обойтись без измерения частот.

Далее проверяют работу ОУ DA1.3 (осциллограммы 5, 6). После этого устанавливают предел измерения "10 мкФ", множитель - в положение "х1" и подключают образцовый конденсатор емкостью 10 мкф. На выходе дифференциатора должны быть прямоугольные, но с затянутыми, сглаженными фронтами колебания амплитудой около 2 В (осциллограмма 7). Резистором R21 выставляют показания прибора - отклонение стрелки на полную шкалу. Цифровой вольтметр (на пределе 2 В) подключают к гнездам XS3, XS4 и резистором R22 выставляют показание 1000 мВ. Если конденсаторы С1 - С4 и резисторы R12 - R16 точно подобраны, то показания прибора будут кратными и на других шкалах, что можно проверить с помощью образцовых конденсаторов.

Измерение емкости конденсатора, впаянного в плату с другими элементами, обычно получается достаточно точным на пределах 0,1 - 10 000 мкф, за исключением случаев, когда конденсатор зашунтирован низкоомной резистивной цепью. Так как его эквивалентное сопротивление зависит от частоты Хс = 1/ωС, то для уменьшения шунтирующего действия других элементов устройства необходимо увеличивать частоту измерения с уменьшением емкости измеряемых конденсаторов. Если при измерении конденсаторов емкостью 10 000 мкф, 1000 мкФ, 100 мкф, 10 мкф использовать соответственно частоты 1 Гц, 10 Гц, 100 Гц, 1 кГц, то шунтирующее действие резисторов скажется на показании прибора при параллельно включенном резисторе сопротивлением 300 Ом (ошибка около 4%) и меньше. При измерении конденсаторов емкостью 0,1 и 1 мкф на частоте 1 кГц ошибка в 4% будет из-за влияния параллельно включенного резистора уже сопротивлением 30 и 3 кОм соответственно.

На пределах 0,01 мкф и 1000 пФ конденсаторы целесообразно проверять все-таки с отключением шунтирующих цепей, так как измерительный ток мал (2 мкА, 200 нА). Стоит, однако, напомнить, что надежность конденсаторов небольшой емкости заметно выше благодаря конструкции и более высокому допустимому напряжению.

Иногда, например, при измерении некоторых конденсаторов с оксидным диэлектриком (К50-6 и т. п.) емкостью от 1 мкф до 10 мкф на частоте 1 кГц появляется погрешность, связанная, по всей видимости, с собственной индуктивностью конденсатора и потерями в его диэлектрике; показания прибора оказываются меньшими. Поэтому бывает целесообразно производить измерения на более низкой частоте (например, в нашем случае на частоте 100 Гц), хотя при этом шунтирующие свойства параллельных резисторов будут сказываться уже при большем их сопротивлении.

ЛИТЕРАТУРА
1. Кучин С. Прибор для измерения емкости. - Радио. 1993, ╧ 6, с 21 - 23.
2. Болгов А. Испытатель оксидных конденсаторов. - Радио, 1989, ╧ 6, с. 44.