Как прокладываются подводные газопроводы. Подводные трубопроводы Морские трубопроводы

В настоящее время актуальным стал вопрос о прокладке второй нитки "Северного потока" (Nord Stream). Прокладка трубопровода по морскому дну предусматривает работу судов-трубоукладчиков.

Суда-трубоукладчики используют различные способы укладки трубопровода. К таким основным способам относятся способы укладки трубопроводов методом S-Lay, J-Lay и Reel-Lay. Каждый из этих методов имеет свои особенности. На рис.1-6 приведена схема укладки трубопроводов каждым из методов, со своими достоинствами и недостатками.

Tensioners - устройство для создания усилий натяжения трубопровода; S-lay barge - баржа-трубоукладчик, работающая по методу S-lay; Stinger - стингер (опускная стрела): Sagbend region - район изгиба трубопровода; Seabed - морское дно; Touchdown point - точка касания трубопроводом дна; Unsupported span - неподдерживаемый участок; Waterline - уровень воды; Overbend region - участок опасный с точки зрения возможного перелома трубопровода.

Укладка трубопровода методом S-lay, в основном, практикуется на мелководье, и скорость укладки данным методом составляет примерно 6,5 км/день. Изгибающие моменты при таком методе укладки становятся главным фактором. Поэтому необходим длинный натяжное устройство больших размеров.

Метод неприемлем для укладки трубопроводов на больших глубинах. Натяжное устройство и стингер необходимы для снижения изгибающих моментов.

Перед укладкой трубопровода на дно каждый сегмент трубопровода сваривается, инспектируется и покрывается защитным слоем, проходя через станции сварки, инспекции, нанесения покрытия на борту судна.

Смонтированный трубопровод опускается с кормы судна, усилие натяжения обеспечивается натяжным устройством, а сам трубопровод поддерживается спускной стрелой, причем кривизна спуска трубопровода строго контролируется. Затем трубопровод изгибается под действием собственного веса, и укладывается на дно.


Рис.3. Судно для укладки трубопровода методом J-Lay


Рис.3. Судно для укладки трубопровода методом J-Lay.

J-Lay Tower - вышка для укладки трубопровода методом J-Lay; J-Lay DP Vessel - судно, оснащенное системой динамического позиционирования, с которого укладывается трубопровод методом J-Lay; Thrusters - винто-рулевые колонки; Unsupported span - неподдерживаемый участок; Sagbemd region - участок изгиба трубопровода; Seabed - морское дно; Touchdown point - точка касания дна трубопроводом; Waterline - уровень воды.

В то время как метод укладки трубопровода S-lay приемлем только для мелководья, метод укладки J-lay может быть использован на глубинах. Это возможно благодаря относительно короткому участку провисающего трубопровода и меньшим требуемым усилиям натяжения при укладке.

Монтаж и укладка проводится практически вертикальным способом, причем трубопровод укладывается на морское дно с одинарным радиусом изгиба. Скорость укладки составляет 3,2 км/день. При укладке каждый сегмент трубы сначала поднимается в вертикальное положение, и затем они свариваются один с другим.

Инспектирование и нанесение покрытий также проводится на борту судна. При движении судна по маршруту трубопровод медленно опускается на дно. Поскольку трубопровод в отличие от метода S-lay, имеет только один изгиб, риск структурных повреждений за счет излома трубопровода минимален.



Water - уровень воды; Touchdown point - точка касания дна трубопроводом; Tensioner - устройство для создания усилий натяжения; Stinger - стингер; Reel - барабан; Reel-Lay Barge - баржа для укладки трубопровода методом Reel-Lay; Pipeline - трубопровод.

Метод укладки трубопровода с барабана Reel-lay считается наиболее эффективным. Скорость укладки составляет 3,5 км/час. Он приемлем для укладки трубопроводов с диаметром трубы менее 18 дюймов и коэффициентом соотношения диаметра трубы к толщине стенок (D/t) между 20 и 24.

Главное преимущество такого метода перед предыдущими в том, что весь производственный процесс, включая сварку, инспектирование и нанесение покрытий проводится на берегу, а не борту судна, что значительно сокращает затраты производственного времени и средств.

Перед укладкой трубопровод наматывается на барабан большого диаметра, смонтированный на борту судна. С этого барабана и производится укладка трубопровода на дно.

Время от времени появляются инновационные проекты судов-трубоукладчиков, как например судно "Lewek Constellation".

Компании, заключающие контракты на прокладку трубопроводов по дну моря, все чаще и чаще решают использовать на борту судна различные способы укладки труб, поскольку инфраструктура нефтегазовых месторождений, по большей части, состоит из различных трубопроводов, которые требуют разных методов укладки труб. Это предъявляет к проектам судов-трубоукладчиков специфические требования: больше гибкости в использовании различных технологий, больше ценовой эффективности для работ на любых глубинах, оснащение оборудованием, пригодным для монтажа различных трубопроводов.



Рис.7. Инновационное судно-трубоукладчик "Lewek Constellation", прокладывающее трубопровод методом Multy-Lay.

Aligner Wheel - выравнивающий барабан; 3000 mT Main Crane - главный кран грузоподъемностью 3000 т; 4x1200 mT Storage reels - четыре барабана для хранения трубопровода весом по 1200 т; 2x1250 mT Carousels - два подпалубных поворотных барабана для трубопроводов весом по 1250 т; 60 mT PLET (pipeline end termination) handling system and work station - оборудование весом 60 т для работы с оконечным устройством трубопровода и рабочая станция; Moon pool 19 m L x 8 m W - шахта со свободной водной поверхностью размерами: длина 19 м, ширина 8 м; 2x600 mt Winches - две лебедки с натяжным усилием 600 т; 2x20mT Storage Reel - два барабана для хранения трубопровода весом по 20 т; 125 mT Secondary Winch - вспомогательная лебедка с усилием 125 т; 2 WROVs TMS (Thether Management System) - два подводных телеуправляемых аппарата (ПА) c устройством контроля кабеля ПА; Helipad Sikorsky 61N&S92 - вертолетная площадка для вертолетов марки Sikorsky 61N и S92; Optional J-Lay Module - опционный модуль для укладки труб методом J-Lay; 2x400mT Tensioners - два устройства для создания усилий натяжения по 400 т; Rigidpipe Straightening - спрямляющее устройство; 80mT Crane - кран грузоподъемностью 80 т.

Наличие на борту судна ПА обеспечивает возможности инспекции и при необходимости проведения подводных работ. ПА является необходимым компонентом оборудования судна-трубоукладчика. Шахта со свободной водной поверхностью с размещенным спускоподъемным оборудованием также представляет собой сложное инженерное сооружение.



Рис.8. Шахта со свободной водной поверхностью и спуско-подъемным оборудованием судна "Lewek Constellation". Оборудование шахты должно обеспечивать работу ТПА на глубине 4000 м в суровых погодных условиях.

Cursor Winch - лебедка; Latch Beam and Subsea Snubber - выдвижная балка и амортизатор для подводных работ; Cursor Frame - рама; HPU (Hydraulic Power Unit) for Hatches and Skidding Pallet - гидравлический привод для люковых закрытий и паллет, движущихся по направляющим; Active Heave Compensation ROV Winches - спуско-подъемная лебедка для ТПА с активной компенсацией качки; Umbilical Sheave - шлангокабельный шкив; Cursor Sheave - шкив; Cursor Rails and Parking Pads - направляющие и поддоны для ТПА; Latch Beam Umbilical Winch - шлангокабельная лебедка; Fall Safe Foldable Top Moon Pool Hatch - безопасный складывающийся верхний люк шахты с открытой водной поверхностью; Skidding Pallet - паллета, перемещающаяся по направляющим; ROV Moon Pool - шахта с открытой водной поверхностью для спуска и подъема ТПА.

Текст: Олег Губарев

Укладку морских трубопроводов можно осуществлять несколькими методами. Выбор метода для данной глубины воды обычно определяется сочетанием характеристик оборудования, возможностью его приобретения или аренды, условиями окружающей среды, стоимостью и другими факторами .

1. Наиболее распространенными являются следующие методы:

Для участков укладки трубопровода в траншею при пересечении береговой линии:

ь протаскивание на берег с баржи, стоящей на якорях в море, по предварительно разработанной траншее с использованием береговых лебедок.

ь монтаж плетей на берегу и протаскивание трубопровода в море по разработанной траншее с использованием лебедок рабочей баржи или буксиров.

ь монтаж трубопровода на барже и протаскивание на берег с баржи по предварительно разработанной траншее. Тяговое усилие передается от установленной на барже лебедки через канат, проходящий через блок на берегу, и обратно на лебедку баржи.

Последний метод является оптимальным с точки зрения минимализации подготовительных работ и затрат на организацию и эксплуатацию береговых сооружений.

2. Для укладки трубопровода в глубоководных зонах:

ь обычный S-метод;

ь метод укладки при вертикальном положении труб (J-метод);

ь укладка трубопровода с барабана (G-метод);

ь буксировка над дном;

ь протаскивание по дну;

ь буксировка на заданной глубине;

ь буксировка на поверхности.

Методы буксировки обычно применяются только при работе с очень короткими трубопроводами.

Для строительства подводных магистральных нефте- и газопроводов, протяженность которых может достигать десятков и сотен километров, в настоящее время применяют технологию наращивания трубопроводав море при использовании специальных трубоукладочных судов (ТУС). При этом все сварочные операции, неразрушаюший контроль и нанесение изоляции на монтажные стыки производятся на борту судна на нескольких рабочих постах одновременно. По мере наращивания трубопровода на одну трубу или секцию судно-трубоукладчик перемещается вперед, а трубопровод сходит на дно путем свободного погружения. Для плавного схода трубопровода с кормы и снижения возникающих напряжений судно оборудуют специальным поддерживающим устройством - стингером. Контроль напряженно- деформированного состояния трубопровода на стингере и свободно провисающем участке между стингером и морским дном осуществляется путем приложения продольного растягивающего усилия на ТУС. Удержание самого судна в стационарном положении осуществляется с помощью системы якорей или динамического позиционирования .

Современная технология строительства морских трубопроводов больших диаметров с использованием судов-трубоукладчиков основана на применении двух основных способов проихводства укладочных работ - S методе и J- методе укладки трубопровода. На практике используют сочетание обеих технологий, а именно строят прибрежные участки с помощью судов, реализующих S- метод, а продолжают монтаж в глубь моря J- методом.

Укладки трубопровода в глубоководных зонах можно классифицировать следующим образом:

1. протаскивание по дну моря;

2. погружение с поверхности моря;

3. спуск на морское дно с трубоукладочных судов (ТУС).

Способ укладки протаскиванием по дну

Кроме того, способ протаскивания используют при сооружении трубопроводов к пунктам беспричального налива танкеров, прибрежным платформам или между двумя нефтедобывающими платформами в море .

В настоящее время делаются усилия для разработки технологии протаскивания трубопроводов на большие расстояния со стыковкой под водой в гипербарических камерах. Главной проблемой при этом остаётся проблема обеспечения необходимой точности укладки и стыковки каждой новой прибуксированной плети трубопроводов с уже лежащей на грунте.

Технологический процесс строительства трубопроводов включает в себя изготовление на берегу плетей (длиной 500-2000 м), спуск их на воду и протаскивание по дну с применением мощных лебёдок или буксиров. Спусковая дорожка для транспортировки плетей трубопровода к урезу воды может иметь различную конструкцию (узкоколейная рельсовая дорога с тележками, спусковой путь из отдельных роликоопор, ледовая спусковая дорожка, спусковая дорожка в виде траншеи, заполненной водой и др.). При этом особое внимание обращается на защиту изоляционного покрытия от механических повреждений. Для создания необходимой тяги используют лебёдки, установленные на буксирах или баржах, которые удерживаются на якорях.

К переднему концу плети приваривается оголовок с устройством для крепления троса.

Оголовок имеет коническую форму или сферическую форму, что предотвращает возможность зарывания головного участка секции трубопровода в грунт при протаскивании. От оголовка трос идёт к тяговой лебёдке, установленной на судне.

Для уменьшения силы трения плеть трубопровода оснащают разгружающимися понтонами, которые позволяют значительно понижать отрицательную плавучесть трубопровода .

Длина секции (плети), которая может быть уложена единовременно, зависит от её веса и мощности системы перемещения. Вес протаскиваемой плети - главный фактор.

Способ протаскивания плетей трубопровода по дну по сравнению укладкой его с трубоукладочного судна имеет следующие преимущества:

ь уменьшаются напряжения в трубопроводе;

ь возрастает глубина укладки;

ь сокращаются простои из-за погодных условий.

Иногда используется метод протаскивания труб в непосредственной близости от дна моря.

При этом применяются понтоны, оснащённые гирляндами цепей, которые при правильном выборе их длины не позволяют трубопроводу всплыть на поверхность или опуститься на дно.

Трубопроводная плеть находится в нулевой плавучести и может транспортироваться с помощью буксиров небольшой мощности на расстоянии 1-2 м от дна моря.

Этот метод по сути дела совпадает со способом придонной буксировки трубопровода при его прокладке свободным погружением.

Метод протаскивания в ледовых условиях становится приемлемым, если зимний лёд достаточно устойчив, чтобы использоваться как рабочая платформа, роли которой в обычных условиях играет судно.

Рис. 9. 1

Способ укладки по дну погружением с поверхности моря

Этот способ широко используется при сооружении трубопроводов в прибрежных зонах.

Порядок производства работ при прокладке трубопроводов предусматривает изготовление на берегу плетей, спуск их на воду, буксировку на плаву к месту укладки и опускания на дно. Осуществление буксировки требует благоприятных гидрологических условий региона и с успехом может применяться на допускаемых по расчёту глубинах моря при волнении 3-4 бала и небольших течениях.

Сварка труб в плети и их изоляция могут быть выполнены по одной из технологических схем, применяемых в полевых условиях. Плети спускают на воду различными способами по узкоколейной дорожке с тележками, роликовым опорам и т.д. В отдельных случаях может оказаться целесообразным устройство траншеи, соединённой с морем .

Преимущество способа поверхностной буксировки плетей трубопровода заключается в возможности визуальной проверки правильности расчёта плавучести трубопровода и полноты его оснастки. Если условия на береговом участке не позволяют собирать и опускать плети в траншею, расположенную нормально к урезу воды, то плети можно собирать на лежнях или стеллажах и скатывать в воду по специально устроенной эстакаде или по наклонному стапелю.

Готовые к прокладке плети длиной до 15 км буксируют к месту укладки.

Трубопровод, поверхность которого, как правило, защищена бетонным покрытием для обеспечения отрицательной плавучести, оснащён понтонами для придания ему положительной плавучести. Готовая плеть, отбуксированная к месту укладки тем или иным способом, соединяется с выходящим из воды ранее проложенным концом и опускается на дно. В зависимости от принятой организации работ головной конец присоединяемой плети может находиться либо на судне, либо на поплавке.

Трубопроводы больших диаметров с положительной плавучестью при способе поверхностной буксировки буксируют к месту укладки без понтонов. Плети таких трубопроводов после присоединения к концу ранее проложенной плети погружают на дно путём залива в неё воды. Вода подаётся с берегового конца. На головном конце опускаемой плети монтируют быстросъёмную заглушку с шлангом и трос с буем. Буй фиксирует местоположение конца петли. По шлангу трубопровод продувают сжатым воздухом до момента всплытия его головного конца, и затем его подают для присоединения к очередной прибуксированной плети. Аналогичные мероприятия должны быть предусмотрены на случай прекращения работ .

Рис. 10. 1

Наибольший изгиб при таком методе укладки трубопровод испытывает в сечениях, расположенных у дна и поверхности воды. Для снижения этих напряжений в отдельных случаях трубы заполняют не морской водой, а другой жидкостью или раствором с необходимым удельным весом. или жидкостью с меньшей плотностью (например, лигроином). Иногда для погружения трубопровода производят последовательное (обычно, автоматическое) отсоединение понтонов или залив воды в понтоны, которые сообщаются друг с другом через шланг.

Если гидрологические условия региона укладки трубопровода не позволяют буксировать плети трубопровода в надводном состоянии, то можно использовать метод подводной буксировки, которая предусматривает сварку трубопроводных секций длиной до 15 км на берегу с последующей транспортировкой их под водой к месту укладки. Спуск плетей на воду осуществляется в отсутствие волнения моря. Всю плеть трубопровода крепят к вертикальным цилиндрическим буям, находящимся на поверхности воды, таким образом, чтобы плеть оказалась ниже зоны активного воздействия волн; для условий Северного моря эта глубина принята равной 40 м.

В таком положении плеть буксируют к месту назначения, затем, используя для позиционирования буксир, секцию опускают на морское дно путём дистанционного затопления буев.

Во время проведения операций по укладке плети с целью уменьшения внутренних напряжений буи разгружаются в несколько приёмов. Для изменения положения трубопровода применяют натяжные устройства, установленные на судне (в случае его использования). Известно, что в случае укладки стальных трубопроводов без наружного антикоррозионного покрытия проблем, как правило, не возникает. При укладке трубопроводов с твёрдым покрытием (эпоксидной изоляцией) на практике случались проблемы, связанные с пониженной прочностью покрытия и её зависимостью от погрешностей позиционирования плети при транспортировке и укладке на морское дно .

Кроме того, иногда используются варианты придонной буксировки плетей, и буксировки с контролем глубины, которая является разновидностью придонной буксировки. Иногда этот метод буксировки называют способом укладки на средних глубинах.

При придонной буксировке к трубопроводу крепятся понтоны и цепи. Общая плавучесть системы рассчитывается таким образом, что трубопровод плавает над морским дном, а часть цепи (пригрузка) находится на морском дне. Этот способ обеспечивает стабильность по отношению к воздействию волн и течений, однако по его использованию имеется ограничение, связанное с тем, что морское дно должно быть достаточно гладким и ровным.

При буксировке с контролем глубины плавучесть системы должна быть рассчитана с такой точностью, чтобы подъёмные силы, действующие на цепи-пригрузы за счёт буксировки с определённой скоростью, подняли бы трубопровод со дна моря. Когда прекращается буксировка или же скорость буксировки падает ниже критического значения, трубопровод как бы зависает над дном. Этим способом уже было отбуксировано нескольких секций трубопроводов диаметром 660 мм и протяжённостью 3,5 км с последующей их укладкой в водах глубиной 150 м.

При сравнении метода сооружения подводных трубопроводов, основанного на придонной буксировке плетей трубопровода с последующим контролем глубины опускания, с традиционным методом, предусматривающим использование трубоукладочного судна, видно следующее его преимущество: требуется минимум техники и оборудования (необходим лишь ведущий буксир с системой контроля и одно или два судна для сбора буев. Способ экономичен, особенно эффективен при подводной укладке изолированных труб, труб с подогревом или пучка трубопроводов в общей оболочке (трубе).

Надводная буксировка

Подводная буксировка

Рассматриваемый способ придонной буксировке труб с последующей их укладкой на дно применим практически для всех типов трубопроводов, которые ранее сооружались традиционным способом с использованием трубоукладочного судна. Операция погружения также не представляет особых трудностей и не является лимитирующим фактором для использования способа. При необходимости буи могут быть разгружены в два или более приёмов с целью уменьшения внутренних напряжений в трубопроводе во время операций буксировки и укладки на дно. Для изменения положения трубопровода требуется устройство для его натяжения, причём в случае укладки стальных трубопроводов без нанесённого сверху антикоррозионного покрытия никаких проблем не возникает, а при укладке трубопроводов с пластиковой изоляцией могут появиться некоторые проблемы. Длина трубопроводных плетей (секций) непосредственно зависит от операции позиционирования. Если течение более или менее умеренное, то точно позиционировать удаётся даже очень длинные трубопроводы. Если позволяют условия трассы, то длина плетей (секций) может быть увеличена.

Спуск на морское дно с трубоукладочных судов (ТУС)

А. Монтаж в горизонтальном или слабонаклонном положении

Наиболее распространённым методом укладки труб этим способом является так называемый S-метод. Для плавного схода трубопровода с кормы судно оборудуют специальным спусковым устройством - стингером. Участок трубы, находящийся между точкой касания дна и стингера, принимает форму S - образной кривой, и поэтому этот способ монтажа подводных трубопроводов получил название S-метода.

Рис. 11.

В этом методе применяется следующая контейнерная технология трубоукладки:

С судового склада трубы подают на вспомогательную монтажную линию с помощью передвижного крана малой производительности;

На вспомогательной монтажной линии трубы осуществляют демонтаж защитных обечаек с торцов трубы, очитку полости труб от посторонних предметов и зачистку кромок для проведения входного контроля торцов труб, проводят входной контроль торцов труб, центрируют (при этом осуществляется также деовализация кромок обеих труб перед их сваркой и сваривают в секции из двух или трёх труб, причём качество сварки проверяется средствами рентгенографического или ультразвукового контроля;

Секции труб перемещают на основную монтажную линии с помощью поперечного конвейера;

На 1-м рабочем посту (станции) монтажной линии секцию труб стыкуют с трубопроводом, центрируют и накладывают основной сварочный шов;

Трубоукладочное судно перемещается по трассе на длину секции, стык секции и трубопровода перемещается на 2-й пост, где накладывают последующие слои сварного шва, затем на 3-й, 4-й и последующие сварочные посты, В зависимости от принятой технологии количество сварочных постов на линии может составлять от 3 до 6;

Стык секции и трубопровода в результате перемещения судна по трассе попадает на пост неразрушающего контроля сварного шва, затеи на пост очистки и изоляции стыка и далее на пост обетонирования стыка (если это предусмотрено технологией), далее трубопровод спускается воду.

S-метод имеет следующие преимущества и недостатки:

Преимущества:

· пригоден для работы на мелких и глубоких водах;

· меньшая зависимость от погоды, чем для буксиров или лебедочных барж, используемых лая буксировки или протаскивания;

· высокая производительность по сравнению с J-методом;

· можно найти несколько судов, работающих по этому методу, в любом районе мира (число их растет по мере снижения глубины воды), что ведет к снижению затрат ка мобилизацию и демобилизацию, так как судно можно найти в районе проведения работ.

Недостатки:

· возможность повреждения стингера ударами волн;

· поскольку трубопровод проходит через поверхность воды под относительно небольшим углом, довольно протяженный участок оказывается близко к поверхности и подвержен воздействию волн;

· группа обеспечения укладки обходится дороже, чем буксир или лебедочная баржа;

· ТУС не может поворачиваться по ветру при укладке;

· высокие растягивающие нагрузки ограничивают рабочую глубину.

В процессе укладки морских трубопроводов стыковые сварные соединения труб бывают нагружены в значительно большей степени, чем сухопутные, и поэтому требования к их сварке повышены. Однако из-за высокой стоимости трубоукладочного судна (и по другим техническим и технологическим причинам) требуется высокая скорость изготовления трубопровода. В связи с эти для морских трубопроводов обычно применяют наиболее прогрессивные автоматизированные сварные установки, позволяющие осуществлять сварку с внутренней стороны трубы .

В состав вспомогательной монтажной линии входят устройства для перемещения труб и секций, станок подготовки кромок под сварку, детектор качества покрытия и наружный или внутренний центратор, сварочное оборудование, средство контроля качества сварки, устройства изоляции стыка и средства врезки и ремонта дефектного участка шва.

Кроме перечисленного оборудования, в состав основной монтажной линии входят натяжное устройство и средства обетонирования стыка. На современных судах-трубоукладчиках обетонирование, как правило, не проводят, а стык изолируют слоем битума, полиэтиленовой лентой или термоусадочной муфтой.

Современные трубоукладочные суда, работающие по S-методу, способны укладывать трубопроводы диаметром до 56" (1417 мм) на глубину до 300 м, а диаметром 32" (810 мм) - на глубину до 700 м со скоростью 3-5 км/сутки.

Рассмотренный S-метод монтажа морских трубопроводов имеет ограничение по глубине воды, т.к. горизонтального усилия трубоукладочного судна может оказаться недостаточно для создания требуемого напряжённо-деформированного состояния трубопровода. При этом увеличение радиуса кривизны и общей длины стингера осложняет контроль за укладкой трубопровода и делает его уязвимым к воздействию волн и течений .

Обычно для удержания ТУС в заданном месте и перемещения вдоль трассы прокладываемого трубопровода (при жёстких ограничениях перемещения под действием ветра, волнений и течений) служит мощная якорная система. Для работы якорной системы большое значение имеет обеспечение держащей силы якорей на грунте.

Помимо якорной системы удержания широко применяется динамическая система позиционирования.

Преимущества динамического позиционирования трубоукладочного судна:

· отсутствие какой-либо опасности повреждения существующих подводных кабелей и трубопроводов;

· меньшие взаимные помехи в случае проведения других операций вблизи ТУС;

· возможность работы в пределах зоны расстановки якорей буровых установок и заякоренных судов;

· гибкость в выборе места спуска и укладки труб на дно;

· быстрый спуск и укладка труб на дно;

· быстрое прекращение на дно в случае ухудшения погодных условий;

· никаких простоев из-за ограничений в расстановке якорей при неблагоприятных погодных условиях;

· сокращение простоев в результате механических повреждений;

· возможность работы при непрерывной вертикальной качке в процессе трубоукладочных операций.

Недостатком динамического позиционирования является глубокая осадка судна, оснащённого азимутальным движителем, находящимся примерно в 4 м ниже киля; подход к берегу невозможен, так как требуется глубина воды не менее 15 м.

Б. Монтаж в вертикальном положении

В настоящее время при строительстве трубопроводов на больших глубинах всё более широкое применение находит J-метод, также получивший своё название по форме кривой, которую принимает трубопровод в процессе монтажа.

Основные особенности J-метода состоят в том, что для стыковки и центровки секции труб с трубопроводом необходим подъёмник для подачи секции на наклонную площадку (спусковую рампу); соединение трубопровода с секцией осуществляется на одном рабочем посту с помощью сварного, муфтового или коннекторного соединения; спуск трубопровода осуществляется прямо с борта или кормы судна без применения стингера, из-за того, что верхний конец трубопровода располагается вертикально.

Преимущество этого способа монтажа трубопровода - возможность применения судов значительно меньших размеров, без использования громоздких стингеров.

Если S-метод имеет ограничение по глубине сверху, то применение J-метода, наоборот, лимитировано минимальной глубиной.

Рис. 12.

J-метод в основном применяется для укладки труб большого диаметра при относительно больших глубинах и предусматривает спуск трубопровода в вертикальном (или близком к вертикальному) положении с судна, оборудованного системой динамического позиционирования. При использовании этого метода плеть трубопровода сходит с ТУС, вися как кабель и слегка изгибаясь к горизонтали только по мере приближения к морскому дну.

В этом случае растяжение действует в почти вертикальном направлении, практически устраняя любую горизонтальную реакцию оборудования, размешенного на судне. Таким образом, полностью устраняется перегиб сверху и достаточно совсем короткого стингера для того, чтобы направлять плеть труб за бортом судна и снимать напряжение с укладочного интервала.

Трубопровод сваривают из 4-х трубных плетей в вертикальном положении в монтажной башне или вышке, установленной на ТУС, и укладывают на дно с натяжением для контроля изгибных напряжений. Судно перемещается вперед, н укладку продолжают, постоянно добавляя к трубопроводу новые плети. Установка плетей в вертикальное положение на монтажной вышке осуществляется с использованием поворотной рампы .

Поэтапная технология укладки трубопровода J-методом выглядит следующим образом:

Первый этап.

Плеть с разделанными кромками загружают со стеллажа на поворотную рампу с помощью двух палубных кранов. Плети фиксируют на поворотной рампе посредством набора роликов, после чего поднимают до тех пор, пока угол их наклона не сравняется с углом, под которым удерживается на стингере уже готовый трубопровод, спускающийся с кормы и удерживаемый удерживаемый устройствами.

Второй этап.

Плеть центрируют с помощью внутреннего центровочного инструмента, подвешенного в верхней части поворотной рампы.

Третий этап.

Сварка стыка закончена. Выполнен неразрушающий контроль. Начинается перемещение судна в новое положение, и стык опускается до уровня поста нанесения покрытия.

Четвертый этап.

На стык наносится покрытие. Начинается перемещение судна в новое положение, и трубопровод сходит через корму в море до тех пор, пока его свободный конец не подойдет к сварочному посту. Опускается поворотная рампа, и повторяется первый этап.

При такой схеме обычно используют только один пост для сварки, контроля и покрытия стыков, поэтому производительность J-метода меньше, чем при работе по S-методу. Однако этот метод имеет то преимущество, что при укладке трубопровода большого диаметра в глубоких водах требуется гораздо меньшее натяжение, чем при укладке S-методом.

Судно для работы по J-методу оборудовано системой динамического позиционирования, поскольку сложно использовать якоря на больших глубинах (до 3000 м), требующих применения J-метода.

J-метод имеет следующие преимущества и недостатки:

Преимущества:

Большая рабочая глубина;

Обычно требуется меньшее натяжение из-за большего угла схода, чем при использовании S-метода в глубоких водах (провисающий участок вместо участка перегиба),

Меньшие напряжения из-за отсутствия перегиба (не используется длинный стингер и конструкция оборудования, приводящая к чрезмерному изгибу трубопровода, но при жесткой вертикальной рампе нужно устанавливать под ней короткий вертикальный стингер с раструбом для ограничения изгибающего момента, действующего на трубопровод);

Для позиционирования ТУС требуется меньшее усилие;

Меньшая чувствительность трубы, проходящей через поверхность воды, к воздействию волн;

Меньшая зависимость от погоды, чем у буксиров или лебедочных барж, используемых для буксировки или протаскивания;

Более легкий спуск, укладка, временный спуск трубопровода на дно и последующий подъем,

Меньшее число пролетов на дне и меньшая длина пролетов, благодаря меньшим остаточным растягивающим напряжениям;

Дает возможность укладывать трубопровод по сложной трассе, для того, чтобы обойти препятствие или для выполнения требований, связанных с эксплуатационной системой;

Использование многотрубных плетей, изготовленных на суше, обеспечивает прекрасный контроль качества, так как большая часть кольцевых швов выполняется на берегу в контролируемых условиях окружающей среды.

При вертикальном положении труб J-метод имеет н некоторые другие преимущества:

ь намного меньшая чувствительность к погодным условиям, поскольку судно может поворачиваться по ветру;

ь меньшие затраты на мобилизацию для судов с небольшими или жестко закрепленными грузовыми стрелами.

Недостатки:

Ограниченное число судов, работающих по J-методу;

Существующие суда, работающие по J-методу, рассчитаны на недостаточно большой диаметр труб, что ведет к увеличению затрат на мобилизацию н демобилизацию при необходимости модернизации баржи для работы с трубами большого диаметра;

Невысокая производительность по сравнению с судами, работающими по S- методу;

ТУС стоит дороже, чем буксир или лебедочная баржа.

В. Разматывание с барабана

Для строительства гибких или стальных трубопроводов небольшого диаметра применяют метод разматывания с барабана, который в специальной литературе получил название G-метода.

Принцип максимизации времени работ на берегу для минимизации дорогостоящего времени работ в морских условиях, характерный для всех процессов строительства и эксплуатации подводных объектов, также применим к G-методу, при котором длинную плеть сваренного, изолированного и прошедшего гидравлические испытания трубопровода изготавливают на берегу и наматывают на барабан большого диаметра.

При укладке трубопровод, который был пластически деформирован в процессе намотки, раскатывают с помощью спрямляющего приспособления для "расправления" кривизны, после чего он ложится на дно по мере продвижения судна вперёд.

Преимуществом данного метода является более быстрая укладка в морских условиях, чем это может быть достигнуто при использовании обычных трубоукладочных судов. Кроме того, возможно также намотать на барабан одновременно несколько трубопровода и таким образом смонтировать сразу несколько линий меньшего диаметра до того, как судно с барабаном вернётся в порт для повторной загрузки .

При сматывании трубопровода с горизонтально или вертикально расположенного на палубе барабана используют следующую технологию:

· на береговой базе трубы сваривают в трубопровод по традиционной технологии;

· по мере наращивания трубопровод навивают на барабан со скоростью до 1,0 км/ч. Навивка осуществляется через изгибающий механизм, придающий трубопроводу предварительную кривизну. Возникающие при этом напряжении не превышают напряжения в трубопроводе при укладке;

· съёмный барабан с трубопроводом устанавливают на палубе трубоукладочного судна. Если барабан на судне установлен стационарно, то навивка трубопровода осуществляется на судне, пришвартованном у береговой базы, где наращивают трубопровод;

· трубоукладочное судно идёт в район трубоукладки;

· конец трубопровода крепят к стояку (райзеру) платформы или сваривают с концом уже проложенного участка трубопровода;

· трубоукладочное судно перемещается по трассе и укладывает трубопровод.

Сматываясь с барабана, трубопровод проходит через выпрямляющее устройство и по роликовой дорожке спускается через наклонный скат в кормовой оконечности судна в воду.

Растягивающее усилие, необходимое при укладке, создаётся совместной работой судового натяжителя и механизма привода барабана. Иногда на судне устанавливается тормозное устройство, препятствующее самопроизвольному разматыванию трубопровода с барабана.

Укладка с барабана позволяет опускать трубопровод в воду под углом, близким к прямому, что позволяет обходиться без стингеров .

В основное технологическое оборудование трубоукладочных судов барабанного типа входят натяжитель, выпрямляющее устройство и барабан с трубопроводом.

При использовании этого метода часто наблюдается овальность и пластическая деформация труб, что исключает возможность их обетонирования и ограничивает диаметр. Трубы должны иметь достаточную массу, обеспечивающую их погружение и устойчивость на дне. Обычно диаметр укладываемых с судов с барабанов по условию обеспечения необходимой отрицательной плавучести без пригрузов ограничен 400 мм.

Рис. 13. Барабанный метод: 1. Судно. 2. Трубопровод. 3. Барабан. 4. Специальное спусковое устроство.

В настоящее время "барабанный" метод укладки трубопроводов широко используется при монтаже трубопроводов из эластичных материалов. Известно, что трубопроводы, сооружённые из эластичных (гибких) труб, проще, дешевле, надёжнее стальных трубопроводов. Обычно гибкие трубопроводы используются в промысловых трубопроводных системах, поскольку по ним транспортируются коррозионно-агрессивная пластовая продукция, или в качестве райзеров .

Гибкая труба со стальной армировкой - составная конструкция из располагаемых слоями материалов, ограничивающая напорный канал. Такая конструкция трубы допускает большие деформации изгиба без значительного увеличения изгибных напряжений. Ещё одним достоинством подводных трубопроводов из эластичных материалов является то, что он может быть легко демонтирован.

Гибкие трубы усиливают в аксиальном и радиальном направлениях с помощью стальных жил, плоских арматурных элементов, спиралей, а также цилиндрических каркасов.

Трубопровод может пересекать водные преграды на суше, или же уходить в море на значительные расстояния. На морских месторождениях трубопроводы и начинаются и заканчиваются у соответствующих платформ. В любом случае строительство подводных трубопроводов сталкивается с рядом сходных проблем.

В частности, это положительная плавучесть трубопровода. Чем больше его диаметр, тем больше возможная архимедова сила, стремящаяся поднять трубу над дном. Большое значение имеет устойчивость трубопровода на донном грунте, которой мешают и неравномерность его прочностных свойств, а также внешние природные воздействия — течения воды или перемещения массивов льда.

На трубопровод могут воздействовать и антропогенные факторы — рыбная ловля сетями, волочение якорей, сброс иных тяжелых предметов. Нужно отметить, что всевозможные опасные предметы достаточно широко распространены как в водоемах суши, так и на шельфе морей — это боеприпасы, мины, затонувшие суда.

Работа в акватории морей требует специализированных судов-трубоукладчиков, у которых стоимость судо-суток весьма высока. Переходы через водные преграды на суше в свою очередь часто осложняются как раз невозможностью использования крупных плавстредств, которые могли бы облегчить процесс контролируемой укладки.

Решения

При пересечении водных препятствий на суше укладка трубопровода может производиться протаскиванием уже подготовленного участка трубопровода по дну с одного берега на другой, погружением со льда, свободным погружением, а также с плавучих средств, в том числе последовательным наращиванием.

При укладке протаскиванием, или погружением монтаж трубопровода и его изоляция производятся на суше, на специальной площадке. Заранее рассчитываются условия балластирования трубопровода на дне водной преграды.

При прокладке трубопровода в морских условиях следует учесть необходимость усиленной защиты от коррозии, что связано с высокой соленостью воды. Трубы изолируют уже в заводских условиях, так же устанавливая так называемою катодную защиту, которая обеспечит электрохимический процесс сохраняющий сталь от разрушения. Трубы так же снаружи бетонируются с использованием специального, особо тяжелого бетона. Эта рубашка защищает свободно лежащую на дне трубу от внешних воздействий, а также утяжеляет ее, не давая всплыть. На борту специального судна-трубоукладчика отдельные трубы свариваются, соединения изолируются и трубопровод плавно опускается на дно.

Укладка трубопровода предваряется инженерными изысканиями, с целью определения наиболее безопасного маршрута укладки и определения опасных донных объектов — затонувших судов или боеприпасов. Сложный рельеф, если его нельзя обойти, можно в известной степени улучшить — например, резкие локальные понижения можно засыпать.

На мелководье, особенно где возможно движение ледовых масс, трубопровод необходимо заглублять в грунт. В настоящее время разработаны различные методы, включая применение гидромониторов, которые подмывают грунт под уже уложенной трубой.

Перед началом эксплуатации подводного трубопровода производятся всесторонние тщательные испытания его целостности, так как ремонтные работы в случае утечки продукта на подводном трубопроводе производить гораздо сложнее и затратнее, нежели на суше. К тому же, сама утечка в этих условиях становится причиной загрязнения среды на обширной акватории, что недопустимо с точки зрения охраны окружающей среды.

Глубина моря может достигать нескольких километров. Проложить трубы по дну - сложная задача. Но по дну Северного моря идут 6000 км трубопроводов, некоторые из которых там уже 40 лет.

Размеры самого большого в мире судна - Solitaire - 300 метров в длину и около 40 метров в ширину. Именно это судно задействовано в строительстве газопровода Nord Stream.

Поиск препятствий

На долю морских газопроводов сегодня приходится 45% импорта природного газа в Европу. До начала укладки газопровода проводится тщательное исследование дна моря на протяжении всей трассы. Специалистам необходимо обнаружить все потенциальные препятствия - это и затонувшие корабли, и боеприпасы, и просто большие валуны. При необходимости препятствия либо устраняют, либо проектируют трассу в обход. На этом этапе специалисты также выявляют места, где будет необходимо производить заглубление трубопровода в грунт или его засыпку.

Все трубы для будущего газопровода проходят специальную обработку. Изнутри они обрабатываются антифрикционным покрытием, которое снижает сопротивление при транспортировке газа. Сверху трубы обрабатываются антикоррозионным, а затем утяжеляющим бетонным покрытием.

Плавучие дома

Непосредственно укладка труб на дно моря ведется со специальных трубоукладочных судов . Суда-трубоукладчики - это огромные плавучие дома, на которых могут одновременно находиться несколько сотен человек.

В процессе трубоукладки, как правило, принимают участие сразу несколько кораблей - специальные баржи производят бесперерывную доставку труб на трубоукладчик, а перед ним в процессе укладки идет судно, которое ведет мониторинг морского дна. Доставленные трубы выгружаются на складские площадки, расположенные непосредственно на палубе трубоукладчика - на них должен находиться запас труб на 12 часов работы.

Как укладывают трубы

На трубоукладочном судне установлен специальный конвейер - на него поступают трубы, которые здесь же свариваются. Затем каждый сварной шов проходит ультразвуковую проверку на наличие дефектов. После сварки все швы покрываются антикоррозионным покрытием. Сваренные между собой трубы продвигаются по конвейеру в направлении кормы. Здесь расположен стингер - специальная стрела, под углом уходящая в воду, по которой трубы постепенно опускаются на морское дно. Именно он задает требуемый прогиб верхней части трубопровода, что позволяет не допускать деформации металла.

На дне моря трубы, как правило, лежат под собственным весом - их не требуется специально закреплять, потому что вес каждой трубы после нанесения бетонного покрытия достигает нескольких тонн. Лишь в некоторых местах, например у выходов на берег, для обеспечения стабильности трубы укладывают в специальные траншеи и сверху присыпают грунтом.

Из моря - на берег

Процесс укладки морского газопровода, как правило, начинается не с берега, как можно было бы подумать, а в море. Газопровод может состоять из нескольких участков, построенных в разное время с разных судов и потом соединенных между собой - ведь на разных участках газопровод должен выдерживать разное давление, а для этого используются трубы с разной толщиной стенок.
После завершения строительства морской части трубы протаскивают на берег при помощи специальной лебедки, установленной на суше, которая соединяется с трубой железными тросами и медленно вытягивает ее из моря. Затем трубопровод соединяют с его сухопутной частью - делают «захлест».

Обязательным этапом является проведение гидроиспытаний газопровода. Для этого его наполняют водой под требуемым давлением и выдерживают так некоторое время для обнаружения возможных дефектов. Тщательный мониторинг состояния газопровода ведут и после его запуска в эксплуатацию. Для этого применяют специальные электронные устройства внутритрубной диагностики.

Трубопроводный транспорт России, имеющий почти 100-летнюю историю, является крупнейшим в мире. Однако, морские трубопроводы (МТ) используются сравнительно недавно. Построены и введены в эксплуатацию морские участки газопроводов: «Северо-Европейский» (Nord Stream или СЕГ) в Балтийском море, «Голубой поток» и «Туапсе-Джубга» в Черном море. Морские нефтепроводы относительно небольшой протяженности имеются в Печерском море (отгрузочый трубопровод Варандейского нефтяного терминала), на Балтике (месторождение Д-6) на шельфе Сахалина. В стадии проектирования находятся МТ от Штокмановского ГКМ в Баренцевом море и Киринского ГКМ на шельфе острова Сахалин, "Южный поток" в Черном море. В дальнейшем, по мере развития работ на арктическом шельфе, следует ожидать существенного увеличения количества МТ. Эксплуатация МТ, по отношению к эксплуатации трубопроводов на суше, имеет определенную специфику, которая недостаточно отражена в действующей в РФ нормативной документации. Вопросы обеспечения безопасной эксплуатации этих трубопроводов в настоящее время решаются, главным образом, на основе проектов, ориентированных, преимущественно, на внутритрубную диагностику. Такой принцип не соответствует современным требованиям надежности и безопасности опасных производственных объектов. Только системный подход, ориентированный на полномасштабное выполнение задачи контроля МТ в реальном времени, а также своевременное и качественное выполнение обследований, технического обслуживания и ремонтно-восстановительных работ могут быть гарантией безопасной эксплуатации МТ в условиях Арктического шельфа. Какие шаги необходимо сегодня предпринять для обеспечения такого подхода?

Особенности морских трубопроводов

При проектировании и строительстве надежность и безопасность МТ обеспечиваются по повышенным требованиям, по отношению к проложенным на суше. Это вызвано особыми (морскими) условиями, такими как, достаточно агрессивная морская среда, подводное расположение, повышенная протяженность без промежуточных компрессорных станций, воздействия морского волнения, ветра и течений, сейсмичность, сложный рельеф дна, ограниченные возможности подготовки и контроля трассы, затрудненность или невозможность реализации стандартного для магистральных газопроводов регламента обслуживания и ремонтов и т.д.

В качестве специальных мер обеспечения безопасности МТ можно указать следующие:

  1. установка вдоль трассы МТ охранных зон (на расстояние до 500 м от оси трубопровода) с особым режимом мореплавания и хозяйственной деятельности, определяемым на федеральном уровне;
  2. обеспечение защиты МТ от коррозии, в значительной степени определяющей его надежность и безопасность, на весь срок его эксплуатации и только комплексно (наружным и внутренним покрытием и средствами катодной защиты);
  3. использование в конструкции МТ изолирующих соединений с системой защиты от коррозии (фланец или муфта) от сухопутных участков;
  4. учет при проектировании МТ всех возможных воздействий на трубопровод, которые могут потребовать дополнительной защиты, а именно:

Возникновение и распространение растрескивания или смятия труб и сварных швов в процессе монтажа или эксплуатации;

Потеря механических свойств трубной стали;

Недопустимо большие пролеты трубопровода на дне;

Эрозия морского дна;

Удары по трубопроводу якорями судов или рыболовецких тралов;

Сейсмические воздействия;

Нарушение технологического режима транспортировки газа.

  1. выполнение при проектировании МТ анализа допустимых пролетов и устойчивости трубопровода на дне моря, а также расчета патрубков - ограничителей лавинного смятия трубопровода в процессе его укладки на больших глубинах моря;
  2. заглубление МТ в дно на участках его выхода на берег ниже прогнозируемой глубины размыва дна акватории или берегового участка на весь период эксплуатации морского трубопровода;
  3. прокладка МТ по поверхности дна моря только при условии обеспечения его проектного положения в процессе всего периода эксплуатации (исключается возможность его всплытия или подвижек под воздействием внешних нагрузок или повреждения рыболовецкими тралами или якорями судов), при необходимости, дно акватории предварительно подготавливается либо трубопровод укладывается в траншею;
  4. выбор способа защиты МТ в зависимости от местных условий окружающей среды и степени потенциальной угрозы каждого воздействия на газопровод;
  5. проектирование МТ свободным от препятствий потоку транспортируемого продукта (в случае применения кривых искусственного гнутья или фитинговых изделий, их радиус принимается не менее 10 диаметров трубопровода, что достаточно для свободного прохождения очистных и контрольных устройств).

Для обеспечения безопасности транспортировки углеводородов и снижения риска при проектировании и сооружении подводных трубопроводов используются самые современные достижения в области их строительства, повышенные требования промышленной безопасности, высококачественные трубы, сварочные и изоляционные материалы, системы контроля и т.д. Данное обстоятельство объективно создает условия для повышения надежности и безопасности МТ, что подтверждается отсутствием аварий на всех МТ, введенных в эксплуатацию в нашей стране. Тем не менее, аварийность на морских трубопроводах является реальным фактом и должна учитываться при проектировании, строительстве и эксплуатации каждого МТ.

Аварийность на морских трубопроводах

Данные по аварийности на морских трубопроводах достаточно широко представлены в доступных источниках информации. Например, они публикуются Управлением трубопроводной безопасности (OPS) Министерства транспорта США (нефтепроводы, газопроводы), а также соответствующими организациями Европейского сообщества. На основании анализа имеющихся данных о примерно 700 случаях аварийной разгерметизации подводных трубопроводов (за примерно 40 летний период), были установлены основные причины их разрушений.

Распределение общего числа разрушений подводных трубопроводов в зависимости от вызвавших их причин

Доминирующими причинами аварийных ситуаций являются: коррозия - 50%, механические повреждения (воздействия якорей, тралов) вспомогательных судов и строительных барж - 20% и повреждения, вызванные штормами, размывами дна - 12%. При этом большинство инцидентов произошло на участках МТ в непосредственной близости от платформ (в пределах ~15,0 м), в том числе, на стояках.

На основании анализа статистических данных по аварийности морских трубопроводов было выявлено, что с учетом принятых мер для повышения надежности и безопасности МТ, интенсивность аварий на морских трубопроводах постоянно сокращалась и в настоящее время находится в пределах 0,02 - 0,03 аварий в год на 1000 км их протяженности.

Для сравнения, в начальный период использования МТ (70 - годы прошлого века) интенсивность аварий на морских трубопроводах в Мексиканском заливе составляла 0,2 аварий/год/1000 км трубопроводов и 0,3 аварий/год/1000 км - в Северном море.

Для сравнения - в России средняя частота аварий составляет 0,17 аварий/год/1000 км для газопроводов и 0,25 аварий/год/1000 км для нефтепроводов.

При эксплуатации МТ, несмотря на принимаемые меры безопасности, имеются реальные угрозы их повреждения или нарушения работоспособности. К этим угрозам следует отнести дефекты трубопровода, нештатные технологические процессы и режимы, техногенные опасности, процессы и явления в геологической среде, природно-климатические и геологические факторы, действия третьих лиц, научная, промышленная, военная деятельность в районах размещения МТ и другие причины.

Степень опасности аварий морских трубопроводов

Аварии морских трубопроводов создают опасность нарушения экологического равновесия морской и геологической сред в районах их использования. Степень опасности аварий значительно увеличивается в арктических и дальневосточных морях России, которые характеризуются низким уровнем интенсивности естественной биологической очистки, что в случае аварийных разливов нефти может привести к длительному загрязнению морской воды и донных отложений.

В случае аварии на морском трубопроводе, экологический ущерб будет определяться размером платежей за сверхнормативное загрязнение окружающей среды и стоимостью работ по локализации и ликвидации аварийного разлива. В морских условиях истечения, из-за отсутствия надежной системы обнаружения утечек, а также сложностью проведения работ по ликвидации аварийных разливов нефтепродуктов в море, можно ожидать утечек с существенно более высокими значениями, чем среднестатистические для действующих сухопутных трубопроводов.

Реальность аварий МТ, степень их опасностей, не большой опыт и возможные риски эксплуатации МТ требуют адекватных мер обеспечения безопасности, которые, в соответствии с требованиями ФЗ от 27.12.2002 № 184-ФЗ "О техническом регулировании", должны быть отражены, прежде всего, в подходах к организации эксплуатации МТ.

Анализ зарубежного опыта регулирования эксплуатации морских газопроводов

За рубежом установлено достаточно жесткое регулирование эксплуатации морских трубопроводов. Основные документы из числа общепризнанных международных стандартов (изданных в США, Великобритании, Норвегии, Нидерландах и т.д.), указаны в таблице.

В Европе регулирование эксплуатации морских газопроводов реализуются в форме Директив Европейского Союза, которые утверждаются членами Европейского Союза. При этом широко используется метод ссылок на действующие специальные нормативные документы по магистральному морскому трубопроводному транспорту, получившие положительную оценку по результатам длительного применения (примерно 20 стандартов серии ISO, стандарты США, Норвегии, Канады и др.), такие как:

АРI - 1111 "Проектирование, строительство, эксплуатация и ремонт морских трубопроводов для углеводородов", Практические рекомендации. 1993 (стандарт США);

Det Norske Veritas" (DNV) "Правила для подводных трубопроводных систем", 1996 г.(стандарт Норвегии);

ВS 8010. "Практическое руководство для проектирования, строительства и укладки трубопроводов. Подводные трубопроводы". Части 1, 2 и 3, 1993 г. (британский стандарт);

Стандарт США АSМЕ В 31.8 "Нормативы по транспортировке газа и распределительным трубопроводным системам", 1996 г.;

Стандарт США МSS -SР - 44 "Стальные фланцы для трубопроводов", 1990г.

ASME B31.4-2006 "Трубопроводные системы для транспортировки жидких углеводородов и других жидкостей";

ASME B31.8-2003 "Системы трубопроводов газа и газораспределение"; -CAN-Z183-M86 "Системы нефтегазопроводов";

ASTM 96 "Абразивостойкость покрытий трубопроводов".

Чаще других используются стандарты компании Det Norske Veritas (DNV). В частности, на их основе создан морской участок СЕГ и проектируется газопровод со Штокмановского ГКМ.

Система стандартов DNV связывает безопасность с устранением угрозы причинения вреда персоналу, имуществу и/или окружающей среде, а риск - с размером причиненного ущерба. Указанный подход ориентирован на баланс действий по управлению эксплуатационными и технологическими рисками для нахождения устойчивого равновесия между безопасностью, функциональными возможностями и стоимостью.

Требования распространяются на инспекции и ремонт трубопроводов. При этом должны быть установлены основные положения инспекций и контроля, базирующихся на детальных программах, принципы формирования которых пересматриваются через 5-10 лет.

В соответствии с разделом B 200 стандарта DNV, трубопроводная система в обязательном порядке должна обеспечиваться текущим контролем (инспекцией) в течение времени эксплуатации. Стандарты DNV предписывают обследование конструкции морских трубопроводов и обнаружение дефектов (разд. 10, п. В, Е DNV-OS-F-101), инспекцию и контроль внешней и внутренней коррозии (разд. 10, п. С, D DNV-OS-F -101).

При этом "Параметры, которые могут угрожать работоспособности трубопроводной системы, должны контролироваться и оцениваться с той частотой, которая позволит принять меры по устранению неисправности прежде, чем система будет повреждена".

В целом, изложенные в стандартах DNV положения и требования носят рекомендательный характер и не содержат конкретных положений по технике и технологиям их решения.

Нормативное регулирование эксплуатации морских трубопроводов в РФ

По результатам рассмотрения и анализа действующей нормативно-правовой базы в части требований федеральных органов власти и надзорных органов к организации и производству работ по обследованию, эксплуатации и ремонту морских участков газопроводов, можно отметить следующее.

1. В настоящее время проходит обновление всей существующей нормативной базы строительства путем актуализации СНиП и ГОСТ, внедрения стандартов Европейского союза, а также создание единой нормативной базы Таможенного союза России, Белоруссии и Казахстана и ЕврАзЭс.

2. Операторы трубопроводов имеют возможность формировать собственную нормативную базу, не противоречащую федеральному законодательству, как путем разработки новых документов, так и путем признания действующих нормативных документов - российских и международных.

3. В Российской Федерации директивно установлены общие требования обеспечения безопасности морского трубопроводного транспорта нефти и газа путем соответствующей организации и порядка проведения работ по их обследованию, эксплуатации и ремонтам. Детальная нормативно-техническая документация, регламентирующая организацию, проведение и контроль этих работ на федеральном уровне отсутствует, поскольку предполагается, что она будет разрабатываться на уровне организаций и предприятий.

4. Правовой основой эксплуатации МТ являются Федеральный закон № 187-ФЗ от 30.11.1995 г. и постановление Правительства РФ от 19.01.2000 г. № 44. В соответствии с этими документами система эксплуатации МТ должна создаваться и функционировать с соблюдением требований предусмотренных водным законодательством, и в порядке, установленном Правительством Российской Федерации, а также на основе действующей в РФ нормативно-технической документации (НТД), внутренней нормативной документации ЭО (филиала ЭО), а также признанных в Российской Федерации международных стандартов.

5. В Российской Федерации в области проектирования, строительства и эксплуатации морских трубопроводов применяются нормативные документы, указанные в таблице. На практике широко используются международные стандарты:

ISO 13623, ISO 13628, ISO 14723-2003;

Стандарты DNV, включая Правила планирования и выполнения морских операций;

Стандарты CAN/CSA-S475-93 (Канадская ассоциация стандартизации). Морские операции. Морские сооружения;

Германский Ллойд. Правила классификации и постройки. III. Морская техника.

Кроме указанных в таблице, имеется около 70 других нормативных документов, имеющих отношение к различным аспектам жизненного цикла МТ.

6. Основным действующим на государственном уровне документом, является ГОСТ Р 54382-2011 Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования (далее - ГОСТ), который устанавливает требования и правила на проектирование, изготовление, строительство, испытания, ввод в эксплуатацию, эксплуатацию, техническое обслуживание, переосвидетельствование и ликвидацию подводных морских трубопроводных систем, а также требования к материалам для их изготовления. ГОСТ является переводом с английского на русский норвежского стандарта DNV-OS-F101-2000 (Oil and gas industry. Submarine pipeline systems. General requirements), устанавливает требования безопасности для подводных морских трубопроводных систем путем определения минимальных требований к проектированию, материалам, изготовлению, строительству, испытанию, вводу в эксплуатацию, эксплуатации, техническому обслуживанию, переосвидетельствованию и ликвидации и достаточно хорошо согласуется со стандартом ИСО 13623, устанавливающим функциональные требования для морских трубопроводов (имеются некоторые отличия).

ГОСТ требует, чтобы параметры, влияющие на работоспособность трубопроводной системы, контролировались и оценивались. При этом периодичность мониторинга или инспекций должна быть такой, чтобы трубопроводная система не подвергалась опасности вследствие какого-либо ухудшения показателей, износа, которые могут произойти между двумя последовательными интервалами (периодичность должна обеспечить возможность своевременного устранения неисправности). Указывается, что если визуальный осмотр или простые измерения не являются практичными или надежными, а доступные методы проектирования и накопленный опыт не достаточны для надежного предсказания эксплуатационных характеристик системы, то может потребоваться оснащение трубопроводной системы контрольно-измерительными приборами.

Требования ГОСТ к эксплуатации, инспекциям, модификациям и ремонтам трубопроводов распространяются на следующие элементы:

Инструкции;

Хранение эксплуатационной документации;

Измерения за технико-эксплуатационными параметрами:

Основные принципы контроля и мониторинга;

Специальные проверки;

Обследование конфигурации трубопровода;

Периодические обследования;

Контроль и мониторинг наружной коррозии;

Трубопроводы и райзеры в зоне погружения;

Контроль и мониторинг внутренней коррозии;

Коррозионный контроль;

Коррозионный мониторинг;

Дефекты и ремонт.

Однако эти требования имеют общий характер и для практического использования нуждаются в детализации, которую целесообразно осуществить в рамках нового стандарта (далее - Стандарт).

Следует отметить, что выборочное применение международных требований не всегда возможно по причине неоднородности подходов в России и за рубежом к регулированию безопасности на одних и также объектах.

Общий подход к формированию Стандарта

В настоящее время в Российской Федерации техническое регулирование, в том числе и в области эксплуатации магистральных газопроводов, осуществляется в соответствии с ФЗ от 27.12.2002 № 184-ФЗ "О техническом регулировании", который принципиально изменил отечественную систему стандартизации. Новизна этой системы заключается в следующем:

Создается 3-х уровневая система построения нормативной документации, в которой обязательными для исполнения являются только требования верхнего (директивного) уровня, которые устанавливаются специальными техническими регламентами (СТР) РФ;

Государственные (национальные) стандарты имеют добровольный характер применения;

Корпоративные стандарты действительны только среди утвердивших их организаций;

Разрешено применение международных стандартов в качестве основы разработки национальных стандартов;

Ответственность за безопасность эксплуатации техногенных объектов, в том числе объектов трубопроводного транспорта, возложена на их владельцев (заказчиков).

Решение задач обеспечения безопасности эксплуатации МТ должно учитывать требования отечественных и зарубежных стандартов и увязать безопасность с устранением угрозы причинения вреда персоналу, имуществу и/или окружающей среде, а риск - с размером причиненного ущерба. Указанный подход должен быть ориентирован на баланс действий по управлению эксплуатационными и технологическими рисками для нахождения устойчивого равновесия между безопасностью, функциональными возможностями и стоимостью. Для этого должны быть установлены основные положения/принципы эксплуатации МТ, в части, контроля, технического обслуживания и ремонта их элементов, включая инспекции, осмотры и обследования.

Стандарт должен реализовать положения общей концепции технического регулирования, применительно к объекту его регулирования и относиться к основополагающим документам (организационно-методический и общетехнический стандарт).

Стандарт должен разрабатываться на основе обоснованных научных и технических положений, направленных на снижение риска и обеспечение безопасности при эксплуатации МТ и обеспечить современный уровень организации и проведения соответствующих работ.

Стандарт должен обеспечить уровень безопасности эксплуатации МТ, которая должна восприниматься как совокупность промышленной безопасности, экологической безопасности, защиты от не санкционированного вмешательства и террористических угроз, охраны труда и т.д., не ниже, чем береговых участков.

Стандарт должен распространяться на процессы эксплуатации, обследований, технического обслуживания и ремонтов МТ, проложенных на континентальном шельфе и во внутренних морях Российской Федерации.

Стандарт должен устанавливать (в минимальном объёме) общие положения, основные руководящие положения, рекомендации и обязательные для соблюдения общие технические требования, важнейшие нормы и правила к процессам, процедурам, работам и операциям, связанным с эксплуатацией, обследованиями, техническим обслуживанием и ремонтами МТ. Требования Стандарта не должны препятствовать проявлению инициатив по внедрению современных методов и технических средств, оптимизации технологий и организационных процессов и осуществлению работ по эксплуатации МТ на основе хорошей морской практики.

Стандарт должен содержать как требования безопасности, учитывающие опасные факторы, характерные для эксплуатации МТ, так и административные положения, к которым относятся правила планирования, организации, подготовки, проведения, контроля, приемки различных работ и правила подтверждения соответствия используемого для эксплуатации, обследований и ремонта оборудования, соответствующим требованиям. Основные угрозы безопасности МТ

Анализ доступной информации по опыту эксплуатации морских трубопроводных систем для транспортировки углеводородов показывает, что составляющими общей угрозы безопасности являются:

Природно-климатические факторы;

Процессы и явления в геологической среде;

Конструктивные и технологические дефекты трубопровода;

Нештатные технологические ситуации;

Техногенные опасности (взрывоопасные объекты; затопленное химическое оружие и затонувшие объекты);

Деятельность на море;

Действия третьих лиц.

По имеющимся данным, внешние угрозы (с внешней стороны трубопровода) превалируют над внутренними (внутри трубы), как по общему показателю аварийности, так и по степени их опасности. В этой связи приоритет получили вопросы обследований МГП для обеспечения диагностики его технического состояния.

Стандарт должен поощрять проявление инициатив персонала по внедрению современных методов и технических средств эксплуатации, обследований и ремонтов МТ, а также по оптимизации соответствующих технологий и организационных процессов на основе хорошей морской практики.

Стандарт должен обеспечивать:

Защиту жизни и здоровья человека, имущества, а также предупреждения действий, вводящих в заблуждение потребителей (пользователей) относительно назначения и безопасности МТ;

Концентрацию в едином документе основных требований нормативно-правовых и нормативно-технических документов, действующих, в области эксплуатации, обследований, технического обслуживания и ремонтов МТ;

Устранение пробелов регламентирования деятельности по эксплуатации, обследованиям, техническому обслуживанию и ремонтам МТ.

Особое внимание должно быть уделено требованиям к обследованиям и ремонтам МТ, касающимся специальных процессов, процедур, работ, морских операций, судов и оборудования.

Стандарт должен разрабатываться на основе обоснованных научных и технических положений, направленных на снижение риска и обеспечение безопасности при эксплуатации МТ и должен обеспечить современный уровень организации и проведения соответствующих работ.

Все основные положения, нормы, требования и правила Стандарта должны быть гармонизированы со своими аналогами существующей российской и зарубежной нормативной базы.

Требования к морским работам (обследования и ремонты МТ, морские операции) должны базироваться на использовании практического опыта разработки и реализации "морских проектов" в нашей стране, а также с учетом применимых норм, правил и требований РМРС, норвежских (DNV) и американских (API) стандартов, рекомендаций Канадской ассоциации стандартов и других источников информации.

При разработке указанных технических условий и спецификаций требуется использовать НТД, в том числе, общепризнанных международных стандартов, таких как, АРI 1111 (1993), DNV (1996) и ВS 8010 (1993), а также результаты научных исследований по этой проблеме.

Стандарт следует разрабатывать на основе комплексного подхода к организации и проведению всех работ по эксплуатации МТ, включая ремонты. При этом важно обеспечить возможность поддержания постоянной обратной связи для корректировки и дополнения требований.

Стандарт должен устанавливать следующие основные принципы эксплуатации МТ:

  1. Эксплуатации МТ должна быть направлена на предотвращение отказов и уменьшение тяжести их последствий.
  2. Не существует единых (универсальных) правил эксплуатации МТ. Для каждого МТ должны быть установлены индивидуальные правила, учитывающие особенности его использования, технического обслуживания и ремонтов. Первоначально установленные правила должны периодически анализироваться и, при необходимости, пересматриваться, с учетом накопленного опыта эксплуатации МТ. Эффективное развитие правил может и должен обеспечить персонал, непосредственно обслуживающий МТ.
  3. Значительная часть вероятных отказов МТ не связана с возрастом газопровода и средств его эксплуатации, а зависит от качества строительства, использования и технического обслуживания.
  4. Эксплуатация МТ должна быть основана на системе специальных мероприятий по обеспечению заданного уровня надежности газопровода на основе единой системы экспертно-диагностического обслуживания, предусматривающей техническое обслуживание и ремонт его линейной части по фактическому состоянию на основе диагностики и мониторинга технического состояния газопровода и его грунтового основания.
  5. Принципиальные решения по техническому обслуживанию и ремонтам МТ должны обосновываться путем оценки риска неблагоприятного развития исходных событий (причин этих решений).
  6. Планирование ремонтов должно сопровождаться выявлением состояний, предшествующих отказам, и прогнозированием моментов наступления отказов.
  7. Капитальные ремонты должны быть, по возможности, исключены путем эффективного контроля и мониторинга процесса использования МТ, проведения своевременных, обследований, диагностики и прогноза изменения технического состояния МТ, ремонтно-профилактических и ремонтно-восстановительных работ на проблемных участках газопровода.
  8. Обслуживающий персонал должен быть нацелен на необходимость генерирования обоснованных предложений, направленных на обеспечение надежности и безопасности эксплуатации МТ, а также снижение эксплуатационных рисков.
  9. Учитывая, что каждый конкретный МТ имеет особенности местных условий, проектных и строительных решений, инструкций заводов-изготовителей и поставщиков оборудования и материалов, используемых в составе МТ, детальные требования к эксплуатации, обследованиям и ремонту МТ должны разрабатываться и фиксироваться в должностных и производственных инструкциях, чертежах, схемах и других документах.

Стандарт должен разрабатываться на основе действующей в Российской Федерации НТД, с учетом проектных решений по введенным в эксплуатацию МТ, текущего отечественного и международного опыта обследования, эксплуатации и ремонтов морских трубопроводов и других подводных стационарных объектов, а также с использованием ведомственных нормативных документов, технической литературы, результатов НИОКР.

Для минимизации объема нормативных требований в Стандарте целесообразно использовать механизм ссылок на общеизвестные спецификации, практические рекомендации и стандарты.

Как представляется, регламентирование деятельности по эксплуатации МТ должно быть установлено специальным государственным стандартом, для разработки которого следует привлечь специалистов имеющих всесторонний опыт и знания как в области проектирования и эксплуатации морских подводных трубопроводов, так и используемых при этом методов и технических средств. Особенно важно учитывать опыт морских водолазных и подводно-технических работ по обследованию и ремонтам различных подводных стационарных объектов.

Таблица - Нормативные документы в области проектирования, строительства и эксплуатации морских трубопроводов, действующие в Российской Федерации

Международные документы

Документ ЕЭК ООН "Руководящие принципы и надлежащая практика обеспечения эксплуатационной надежности трубопроводов";

ИСО 13623-2009 "Нефтяная и газовая промышленность. Системы транспортировки по трубопроводам";

ИСО 5623 Нефтяная и газовая промышленность. Трубопроводные системы транспортировки (ISO 5623 Petroleum and natural gas industries - Pipeline transportation systems).

ИСО 5623 Нефтяная и газовая промышленность. Трубопроводные системы транспортировки (ISO 5623 Petroleum and natural gas industries - Pipeline transportation systems)

ISO 21809 Наружные покрытия для заглубленных или подводных трубопроводов, используемых в трубопроводных транспортных системах;

ИСО 12944-6 "Антикоррозионная защита стальных конструкций с помощью защитных лакокрасочных систем"

ГОСТ Р 54382-2011 Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования. (DNV-OS-F101-2000. Oil and gas industry. Submarine pipeline systems. General requirements).

ASME B31.4-2006 "Трубопроводные системы для транспортировки жидких углеводородов и других жидкостей";

ASME B31.8-2003 "Системы трубопроводов газа и газораспределение";

CAN-Z183-M86 "Системы нефтегазопроводов".

Ведомственные документы

ВН 39-1.9-005-98 Нормы проектирования и строительства морского газопровода

Концепция технического регулирования в ОАО "Газпром" (утверждена приказом ОАО "Газпром" от 17 сентября 2009 г. № 302)

СТО ГАЗПРОМ 2-3.7-050-2006 (DNV-OS-F101) Морской стандарт. Подводные трубопроводные системы (утв. приказом ОАО "Газпром" от 30.01.2006)

СТО Газпром 2-3.5-454-2010. Стандарт организации. Правила эксплуатации магистральных газопроводов (утв. и введен в действие Приказом ОАО "Газпром" от 24.05.2010 № 50),

"Положением о независимом техническом надзоре и контроле качества строительства объектов газотранспортной системы "Ямал-Европа"