Алюминий переходный металл. Переходные пластины МА и АП для присоединения алюминиевых шин к медным выводам электротехнических устройств

(А l ), галлий (Ga ), индий (In ) и таллий (Т l ).

Как видно из приведенных данных, все эти элементы были открыты в XIX столетии.

Открытие металлов главной подгруппы III группы

В

Al

Ga

In

Tl

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)



(Германия)


Бор представляет собой неметалл. Алюминий - переход­ный металл, а галлий, индий и таллий - полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar (Al ) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al +13) 2) 8) 3 , p – элемент,

Основное состояние

1s 2 2s 2 2p 6 3s 2 3p 1

Возбуждённое состояние

1s 2 2s 2 2p 6 3s 1 3p 2

Алюминий проявляет в соединениях степень окисления +3:

Al 0 – 3 e - → Al +3

2. Физические свойства

Алюминий в свободном виде - се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3) - при­мерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов , уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

Некоторые из них:

· Бокситы - Al 2 O 3 H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3)

· Нефелины - KNa 3 4

· Алуниты - KAl(SO 4) 2 2Al(OH) 3

· Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3)

· Корунд - Al 2 O 3

· Полевой шпат (ортоклаз) - K 2 O×Al 2 O 3 ×6SiO 2

· Каолинит - Al 2 O 3 ×2SiO 2 × 2H 2 O

· Алунит - (Na,K) 2 SO 4 ×Al 2 (SO 4) 3 ×4Al(OH) 3

· Берилл - 3ВеО Al 2 О 3 6SiO 2

Боксит

Al 2 O 3

Корунд

Рубин

Сапфир

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ

Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изученияхимических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия со ртутью – амальгамы).

I . Взаимодействие с простыми веществами

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С), с йодом в присутствии катализатора - воды:

2А l + 3 S = А l 2 S 3 (сульфид алюминия),

2А l + N 2 = 2А lN (нитрид алюминия),

А l + Р = А l Р (фосфид алюминия),

4А l + 3С = А l 4 С 3 (карбид алюминия).

2 Аl +3 I 2 =2 A l I 3 (йодид алюминия) ОПЫТ

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S­

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 ­

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

4А l + 3 O 2 = 2А l 2 О 3 + 1676 кДж.

ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ

ОПЫТ

II . Взаимодействие со сложными веществами

Взаимодействие с водой :

2 Al + 6 H 2 O=2 Al (OH) 3 +3 H 2

без оксидной пленки

ОПЫТ

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.

3 Fe 3 O 4 +8 Al =4 Al 2 O 3 +9 Fe + Q

Термитная смесь Fe 3 O 4 иAl (порошок) –используется ещё и в термитной сварке.

С r 2 О 3 + 2А l = 2С r + А l 2 О 3

Взаимодействие с кислотами :

С раствором серной кислоты:2 Al+ 3 H 2 SO 4 =Al 2 (SO 4) 3 +3 H 2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2А l + 6Н 2 S О 4(конц) = А l 2 (S О 4) 3 + 3 S О 2 + 6Н 2 О,

А l + 6Н NO 3(конц) = А l (NO 3 ) 3 + 3 NO 2 + 3Н 2 О.

Взаимодействие со щелочами .

2 Al + 2 NaOH + 6 H 2 O =2 Na [ Al (OH ) 4 ] +3 H 2

ОПЫТ

Na l (ОН) 4 ]тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

С растворами солей:

2 Al + 3 CuSO 4 = Al 2 (SO 4 ) 3 + 3 Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2 Al + 3 HgCl 2 = 2 AlCl 3 + 3 Hg

Выделившаяся ртуть растворяет алюминий, образуяамальгаму .

Обнаружение ионов алюминия в растворах : ОПЫТ


5. Применение алюминия и его соединений

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминияявляется авиационная промышленность : самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода : при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты . Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражениятепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сок.

Соли алюминия сильногидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na 3 AlF 6 растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия - электролитом.

2Al 2 O 3 эл.ток →4Al + 3O 2

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

2) 2Al 2 O 3 +3 C=4 Al+3 CO 2

ЭТО ИНТЕРЕСНО:

  • Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.
  • В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия.
  • К 1855 году французский ученыйСен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством НаполеонаIII, императораФранции. В знаксвоей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.
  • А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы.При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.
  • При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.

ТРЕНАЖЁРЫ

Тренажёр №1 - Характеристика алюминия по положению в Периодической системе элементов Д. И. Менделеева

Тренажёр №2 - Уравнения реакций алюминия с простыми и сложными веществами

Тренажёр №3 - Химические свойства алюминия

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций :
Al + H 2 SO 4 (раствор ) ->
Al + CuCl 2 ->
Al + HNO 3 (
конц ) - t ->
Al + NaOH + H 2 O ->

№3. Осуществите превращения:
Al -> AlCl 3 -> Al -> Al 2 S 3 -> Al(OH) 3 - t ->Al 2 O 3 -> Al

№4. Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите процентный состав сплава, если его общая масса была 10 г?

Алюми́ний - элемент главной подгруппы III группы, третьего периода, с атомным номером 13. Алюминий – р-элемент. На внешнем энергетическом уровне атома алюминия содержится 3 электрона, которые имеют электронную конфигурацию 3s 2 3p 1 . Алюминий проявляет степень окисления +3.

Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий- лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Химические свойства алюминия

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H 2 O (t°);O 2 , HNO 3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. При разрушении оксидной плёнки алюминий выступает как активный металл-восстановитель.

1. Алюминий легко реагирует с простыми веществами-неметаллами:

4Al + 3O 2 = 2Al 2 O 3

2Al + 3Cl 2 = 2AlCl 3 ,

2Al + 3 Br 2 = 2AlBr 3

2Al + N 2 = 2AlN

2Al + 3S = Al 2 S 3

4Al + 3С = Al 4 С 3

Сульфид и карбид алюминия полностью гидролизуются:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S­

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4

2. Алюминий реагирует с водой

(после удаления защитной оксидной пленки):

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2­

3. Алюминий вступает в реакцию со щелочами

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2­

2(NaOH H 2 O) + 2Al = 2NaAlO 2 + 3H 2

Сначала растворяется защитная оксидная пленка: Al 2 О 3 + 2NaOH + 3H 2 O = 2Na.

Затем протекают реакции: 2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 , NaOH + Al(OH) 3 = Na,

или суммарно: 2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ,

и в результате образуются алюминаты: Na - тетрагидроксоалюминат натрия Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительная формула тетрагидроксосоединений следующая: Na

4. Алюминий легко растворяется в соляной и разбавленной серной кислотах:

2Al + 6HCl = 2AlCl 3 + 3H 2­

2Al + 3H 2 SO 4 (разб) = Al 2 (SO 4) 3 + 3H 2

При нагревании растворяется в кислотах - окислителях , образующих растворимые соли алюминия:

8Al + 15H 2 SO 4 (конц) = 4Al 2 (SO 4) 3 + 3H 2 S + 12H 2 O

Al + 6HNO 3 (конц) = Al(NO 3) 3 + 3NO 2­ + 3H 2 O

5. Алюминий восстанавливает металлы из их оксидов (алюминотермия):

8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe

2Al + Cr 2 O 3 = Al 2 O 3 + 2Cr

/ Пластина медно-алюминиевая переходная МА

Пластины переходные медно-алюминиевые ГОСТ 19357-81 служат для присоединения алюминиевых шин к медным выводам электротехнических устройств и медным шинам. Соединение с алюминиевыми шинами сварное, соединение с медными выводами электротехнических устройств и медными шинами - либо разборное (болтовое), либо сварное.

Вид климатического исполнения пластины МА - УХЛ1и Т1 по ГОСТ 19357-81 . Соединение алюминиевой части пластины МА с медной выполняется методом холодной сварки давлением.

Изготовим пластины переходные МА в любом количестве и в кратчайшие сроки

Пример условного обозначения переходной медно-алюминиевой пластины исполнения УХЛ1:

  • Пластина переходная МА 40х4 УХЛ1 ГОСТ 19357-81
  • Пластина переходная МА 50х6 УХЛ1 ГОСТ 19357-81
  • Пластина переходная МА 60х8 УХЛ1 ГОСТ 19357-81
  • Пластина переходная МА 80х8 УХЛ1 ГОСТ 19357-81
  • Пластина переходная МА 100х10 УХЛ1 ГОСТ 19357-81
  • Пластина переходная МА 120х10 УХЛ1 ГОСТ 19357-81

Пластины изготавливаются в соответствии с требованиями настоящего стандарта по рабочим чертежам, утвержденным в установленном порядке. Поверхность платин МА не имеет заусенцев, трещин, задиров, отслаивания металла и других механических повреждений. Проверка качества сварного шва, поверхности пластины МА осуществляется визуальным способом.

Технические характеристики - пластина переходная медно алюминиевые МА

пластины МА 40х4, МА 50х6, М 60х8, М 80х8, МА100х10, МА120х10

Тип пластины

Размеры пластины МА, мм

Масса, не более, кг

медная часть, I

толщина, S

Пластина переходная МА 40 х 4

Пластина переходная МА 50 х 6

Пластина переходная МА 60 х 8

Пластина переходная МА 80 х 8

Пластина переходная МА 100 х 10

Пластина переходная МА 120 х 10

Пластины переходные медно-алюминиевые предназначены для присоединения шин из алюминия к медным выводам различных электротехнических устройств, а также к шинам из меди.

Пластины переходные медно-алюминиевые имеют сварные соединения с алюминиевой шиной, а также разборное (болтовое) с медными выводами. Сами пластины изготавливаются по методу так называемой контактной сварки или холодной сварки под давлением.

Нормируются пластины переходные медно-алюминиевые полностью соответствуя государственному стандарту, а именно стандарту 19357-81. Согласно ему подобные пластины подразделяются на следующие типы:

  • с равновеликим сечением со сварным соединением для безразборных шин;
  • плакированные и равновеликие по степени своей электрической проводимости для разборных шин.

Что касается соединительного шва переходной пластины, который имеет место быть при соединении медной пластины с алюминиевой, то он обязательно должен очищаться от шлама и грата. Более того, он должен быть выполнен без каких-либо трещин и свищей. Пластины переходные медно-алюминиевые не должны иметь на своей поверхности какие-либо механические повреждения, например, заусенцы, задиры, отслаивания, трещины.

Соответствуя государственному стандарту, а именно стандарту 10434-82, на медной области пластины обязаны находиться предохраняющие металлические покрытия. Хотя, если пластины переходные произведены в соответствии с определенными климатическими условиями по государственному стандарту 15150-69 исполнения «Т», то они как раз подобных покрытий не имеют.

Согласно специальным техническим требованиям пластины переходные медно-алюминиевые при изгибе в восемнадцать градусов должны выравниваться в исходное положение. Что касается сварного соединения переходной пластины, то оно должно полностью соответствовать госстандарту 10434-82. Срок эксплуатации такого изделия, как пластины переходные медно-алюминиевые, ни в коем случае не может быть меньше, чем аналогичные показатели для всего электротехнического устройства, где они используются.

Проверка таких пластин на предмет соответствия с государственным стандартом 19357-81 осуществляется при приеме предприятием-изготовителем, сдаче, а также согласно типовым и периодическим испытаниям. Подобные испытания осуществляются по случайной выборке. Если результаты проведенных испытаний окажутся неудовлетворительными, берут из той же партии удвоенное количество пластин и проводят испытания снова. Если результат повториться, то вся партия, как правило, признается негодной.

Цели урока: рассмотреть распространение алюминия в природе, его физические и химические свойства, а также свойства образуемых им соединений.

Ход работы

2. Изучение нового материала. Алюминий

Главную подгруппу III группы периодической системы со­ставляют бор (В),алюминий (Аl), галлий (Ga), индий (In) и таллий (Тl).

Как видно из приведенных данных, все эти элементы были открыты в XIXстолетии.

Открытие металлов главной подгруппы III группы

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)

(Германия)

Бор представляет собой неметалл. Алюминий - переход­ный металл, а галлий, индий и таллий - полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим свойства алюминия.

Скачать:


Предварительный просмотр:

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ОБЩАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 81

Алюминий. Положение алюминия в периодической системе и строение его атома. Нахождение в природе. Физические и химические свойства алюминия.

учитель химии

МБОУ ООШ №81

2013г

Тема урока: Алюминий. Положение алюминия в периодической системе и строение его атома. Нахождение в природе. Физические и химические свойства алюминия.

Цели урока: рассмотреть распространение алюминия в природе, его физические и химические свойства, а также свойства образуемых им соединений.

Ход работы

1. Организационный момент урока.

2. Изучение нового материала. Алюминий

Главную подгруппу III группы периодической системы составляют бор (В), алюминий (Аl), галлий (Ga), индий (In) и таллий (Тl).

Как видно из приведенных данных, все эти элементы были открыты в XIXстолетии.

Открытие металлов главной подгруппы III группы

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)

(Германия)

Бор представляет собой неметалл. Алюминий - переходный металл, а галлий, индий и таллий - полноценные металлы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свойства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная массаAr(Al) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al +13) 2 ) 8 ) 3 , p – элемент,

Основное состояние

1s 2 2s 2 2p 6 3s 2 3p 1

Возбуждённое состояние

1s 2 2s 2 2p 6 3s 1 3p 2

Алюминий проявляет в соединениях степень окисления +3:

Al 0 – 3 e - → Al +3

2. Физические свойства

Алюминий в свободном виде - серебристо-белый металл, обладающий высокой тепло- и электропроводностью. Температура плавления 650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3 ) - примерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов , уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

Некоторые из них:

Бокситы - Al 2 O 3 H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3 )

Нефелины - KNa 3 4

Алуниты - KAl(SO 4 ) 2 2Al(OH) 3

Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3 )

Корунд - Al 2 O 3

Полевой шпат (ортоклаз) - K 2 O×Al 2 O 3 ×6SiO 2

Каолинит - Al 2 O 3 ×2SiO 2 × 2H 2 O

Алунит - (Na,K) 2 SO 4 ×Al 2 (SO 4 ) 3 ×4Al(OH) 3

Берилл - 3ВеО Al 2 О 3 6SiO 2

Боксит

Al 2 O 3

Корунд

Рубин

Сапфир

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изучения химических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия с ртутью – амальгамы).

I. Взаимодействие с простыми веществами

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С), с йодом в присутствии катализатора - воды:

2Аl + 3S = Аl 2 S 3 (сульфид алюминия),

2Аl + N 2 = 2АlN (нитрид алюминия),

Аl + Р = АlР (фосфид алюминия),

4Аl + 3С = Аl 4 С 3 (карбид алюминия).

2 Аl + 3 I 2 = 2 AlI 3 (йодид алюминия)

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4

В виде стружек или порошка он ярко горит на воздухе, выделяя большое количество теплоты:

4Аl + 3O 2 = 2Аl 2 О 3 + 1676 кДж.

II. Взаимодействие со сложными веществами

Взаимодействие с водой :

2 Al + 6 H 2 O = 2 Al (OH) 3 + 3 H 2

без оксидной пленки

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.

3 Fe 3 O 4 + 8 Al = 4 Al 2 O 3 + 9 Fe +Q

Термитная смесь Fe 3 O 4 и Al (порошок) –используется ещё и в термитной сварке.

Сr 2 О 3 + 2Аl = 2Сr + Аl 2 О 3

Взаимодействие с кислотами :

С раствором серной кислоты: 2 Al + 3 H 2 SO 4 = Al 2 (SO 4 ) 3 + 3 H 2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2Аl + 6Н 2 SО 4(конц) = Аl 2 (SО 4 ) 3 + 3SО 2 + 6Н 2 О,

Аl + 6НNO 3(конц) = Аl(NO 3 ) 3 + 3NO 2 + 3Н 2 О.

Взаимодействие со щелочами .

2 Al + 2 NaOH + 6 H 2 O = 2 NaAl(OH) 4 + 3 H 2

Na[Аl(ОН) 4 ] – тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

С растворами солей:

2Al + 3CuSO 4 = Al 2 (SO 4 ) 3 + 3Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2Al + 3HgCl 2 = 2AlCl 3 + 3Hg

Выделившаяся ртуть растворяет алюминий, образуя амальгаму.

5. Применение алюминия и его соединений

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминия является авиационная промышленность : самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода : при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты . Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражения тепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сок.

Соли алюминия сильно гидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na 3 AlF 6 растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия - электролитом.

2Al 2 O 3 эл.ток → 4Al + 3O 2

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

2) 2Al 2 O 3 + 3 C = 4 Al + 3 CO 2

ЭТО ИНТЕРЕСНО:

  • Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.
  • В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия.
  • К 1855 году французский ученый Сен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством Наполеона III, императора Франции. В знак своей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.
  • А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы. При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.
  • При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.

3. Закрепление изученного материала

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций:
Al + H 2 SO 4 (раствор) ->
Al + CuCl
2 ->
Al + HNO 3 (конц) - t ->
Al + NaOH + H 2 O ->

№3. Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите процентный состав сплава, если его общая масса была 10 г?

4. Домашнее задание Слайд 2

AL Элемент III (A) группы таблицы Д.И. Менделеева Элемент с порядковым № 13, его Элемент 3 -его периода Третий по распространенности в земной коре название образовано от лат. « Aluminis » – квасцы

Датский физик Ганс Эрстед (1777-1851) Впервые алюминий был получен им в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути.

Современное получение алюминия Современные метод получения был разработан независимо друг от друга: американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия в расплаве криолита с последующим электролизом с использованием расходуемых коксовых или графитовых электродов.

Будучи студентом Оберлинского колледжа, он узнал, что можно разбогатеть и получить благодарность человечества, если изобрести способ получения алюминия в промышленных масштабах. Как одержимый, Чарльз проводил эксперименты по выработке алюминия путем электролиза криолитно-глиноземного расплава. 23 февраля 1886 года спустя год после окончания колледжа Чарльз получил с помощью электролиза первый алюминий. Холл Чарльз (1863 – 1914) американский инженер-химик

Поль Эру (1863-1914) – французский инженер - химик В 1889 году открыл алюминиевый завод во Фроне (Франция), став его директором, он сконструировал электродуговую печь для выплавки стали, названную его именем; он разработал также электролитический способ получения алюминиевых сплавов

8 Алюминий 1. Из истории открытия Главная Далее В период открытия алюминия - металл был дороже золота. Англичане хотели почтить богатым подарком великого русского химика Д.И Менделеева, подарили ему химические весы, в которых одна чашка была изготовлена из золота, другая - из алюминия. Чашка из алюминия стала дороже золотой. Полученное «серебро из глины» заинтересовало не только учёных, но и промышленников и даже императора Франции. Далее

9 Алюминий 7. Содержание в земной коре главная Далее

Нахождение в природе Важнейшим на сегодня минералом алюминия является боксит Основной химический компонент боксита - глинозем (Al 2 O 3) (28 - 80%).

11 Алюминий 4. Физические свойства Цвет – серебристо-белый t пл. = 660 °C . t кип. ≈ 2450 °C . Электропроводный, теплопроводный Легкий, плотность ρ = 2,6989 г/см 3 Мягкий, пластичный. главная Далее

12 Алюминий 7. Нахождение в природе Бокситы – Al 2 O 3 Глинозем – Al 2 O 3 главная Далее

13 Алюминий главная Вставьте пропущенные слова Алюминий - элемент III группы, главной подгруппы. Заряд ядра атома алюминия равен +13. В ядре атома алюминия 13 протонов. В ядре атома алюминия 14 нейтронов. В атоме алюминия 13 электронов. Атом алюминия имеет 3 энергетических уровня. Электронная оболочка имеет строение 2 е, 8е, 3е. На внешнем уровне в атоме 3 электронов. Степень окисления атома в соединениях равна +3 . Простое вещество алюминий является металлом. Оксид и гидроксид алюминия имеют амфотерный характер. Далее

14 Алюминий 3 . Строение простого вещества Металл Связь - металлическая Кристаллическая решетка - металлическая, кубическая гранецентрированная главная Далее

15 Алюминий 2. Электронное строение 27 А l +13 0 2e 8e 3e P + = 13 n 0 = 14 e - = 13 1 s 2 2 s 2 2p 6 3s 2 3p 1 Краткая электронная запись 1 s 2 2 s 2 2p 6 3s 2 3p 1 Порядок заполнения главная Далее

16 Алюминий 6. Химические свойства 4А l + 3O 2 = 2Al 2 O 3 t 2Al + 3S = Al 2 S 3 C н е м е т а л л а м и (c кислородом, с серой) 2 А l + 3Cl 2 = 2AlCl 3 4Al + 3C = Al 4 C 3 C неметаллами (c галогенами, с углеродом) (Снять оксидную пленку) 2 Al + 6 H 2 O = 2Al(OH) 2 + H 2 C в о д о й 2 Al + 6 HCl = 2AlCl 3 + H 2 2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + H 2 C к и с л о т а м и 2 Al + 6NaOH + 6H 2 O = 2Na 3 [ Al(OH) 6 ] + 3H 2 2Al + 2NaOH + 2H 2 O =2NaAlO 2 +3H 2 C о щ е л о ч а м и 8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe 2Al + WO 3 = Al 2 O 3 + W C о к с и д а м и м е т а л л о в главная Далее

17 Алюминий 8. Получение 1825 год Х. Эрстед: AlCl 3 + 3K = 3KCl + Al: Электролиз (t пл. = 2050 ° С) : 2Al 2 O 3 = 4 Al + 3O 2 Электролиз (в распл. криолите Na 3 AlF 6 , t пл. ≈ 1000 ° С) : 2Al 2 O 3 = 4 Al + 3O 2 гл а вная Далее




Переходные пластины для присоединения алюминиевых шин к медным выводам электротехнических устройств. Пластины бывают алюминиевыми и медно-алюминиевыми.

Пластины переходные МА (медно-алюминиевые)

Пластины предназначены для присоединения алюминиевых шин к медным выводам электротехнических устройств и медным шинам.

Пластины выполнены методом нанесения меди на алюминиевую заготовку.

Из-за отстутсвия сварного шва пластина меньше греется, в отличие от сварных пластин.

Соединение с алюминиевыми шинами сварное, соединение с медными выводами электротехнических устройств и медными шинами - разборное (болтовое).

Пластины переходные АП

(из алюминиевого сплава АД31Т ТУ 36-931-82

Пластины изготовлены из алюминиевого сплава АД31Т1 (АД31Т).

Служат для присоединения алюминиевых шин к медным выводам электротехнических устройств и медным шинам в атмосфере типов I и II по ГОСТ 15150-69.

Соединение с алюминиевыми шинами сварное, соединение с медными выводами электротехнических устройств и медными шинами - болтовое.

Медная полосовая шина марки М1 используется для изготовления шинопроводов, шинных сборок, токопроводов и распределительных устройств, а так же для подключения любого стационарного мощного оборудования. Медные шины достаточно просты в монтаже и обеспечивают высокую надежность.

Поставляемые нами медные шины изготовляются по ГОСТ 434-78 из меди марки не ниже M1 (химический состав по ГОСТ 859-78). Шина может быть мягкой (ШММ) и твердой (ШМТ)

Мы поставляем шину шириной от 16 до 120 мм, толщиной от 3 до 30 мм и длиной от 2 до 6 м (стандартное исполнение 4м), прямоугольного сечения и с радиусом.

Гибкая изолированная шина изготавливаются из нескольких слоев тонкого проводника электролитической меди и ПВХ-изоляции с высоким электрическим сопротивлением.

Медная изолированная шина применяется для распределения и передачи электроэнергии во всех типах низковольтных установок для всех типов присоединений в случаях, когда нужна повышенная гибкость, эстетика шкафа, а также при работе в коррозионных условий.

Особенно гибкая шина удобна для монтажа прямо на объекте без использования шиногибов и использования в качестве шинных компенсаторов для соединения шинопроводов и выводов трансформатора (шинные компенсаторы) .

Легко принимают требуемую форму. Ускоряют процессы сборки и демонтажа и позволяют улучшить внешний вид схем, собранных в распределительных шкафах. Повышают надежность системы и безопасность.

Гибкая изолированная медная шина

Гибкая изолированная шина изготавливается из нескольких слоев тонкого проводника электролитической меди и ПВХ-изоляции с высоким электрическим сопротивлением.

Пластины переходные МА, АП. Биметаллические пластины.

Переходные и биметаллические пластины предназначены для качественного соединения медных и алюминиевых проводников.

Медная шина М1Т, М1М

Медная полосовая шина марки М1 используется для изготовления шинопроводов, шинных сборок, токопроводов и распределительных устройств, а так же для подключения любого стационарного мощного оборудования.

Шинодержатели ШППА, ШППБ, ШПРШ и др.

Предназначенные для крепления токопроводящих шин на изоляторы.

Медная шина ШМТ (твердая) и ШММ (мягкая)

Медные профили любого сечения.

Пластина переходная алюминиевая АП

Пластины АП 40х4, АП 50х6, АП 60х8, АП80х8, АП100х10, АП120х10


Пластины переходные алюминиевые АП служит для присоединения алюминиевых шин к выводам электротехнических устройств и шинам. Вид климатического исполнения пластины АП - УХЛ1 по ТУ 36-931-82. Материал пластин АП - алюминий АД31Т.

Пример условного обозначения переходной алюминиевой пластины исполнения УХЛ1:

Пластина переходная АП 40х4 УХЛ1 ТУ 36-931-82

Пластина переходная АП 50х6 УХЛ1 ТУ 36-931-82

Пластина переходная АП 60х8 УХЛ1 ТУ 36-931-82

Пластина переходная АП 80х8 УХЛ1 ТУ 36-931-82

Пластина переходная АП 100х10 УХЛ1 ТУ 36-931-82

Пластина переходная АП 120х10 УХЛ1 ТУ 36-931-82

Переходные пластины

Переходные пластины применяются для присоединения алюминиевых шин к медным выводам электротехнических устройств. Пластины бывают алюминиевыми и медно-алюминиевыми.

Наша компания изготовит переходные пластины в кратчайшие сроки, по чертежам, представленным заказчиком и размерам, необходимым именно ему. Эти детали являются незаменимыми, поэтому, к ним должны предъявляться самые высокие требования, и одно из этих требований - надежное качество.

Алюминиевые пластины производятся различных видов, они могут быть от 160 до 330мм длиной, 40-120мм шириной и 4-10мм толщиной. Вес таких пластин может составить от 70 до 1070 грамм.

Изготавливаются они из самого высококачественного материала. Это алюминий ад31т в климатическом исполнении УХЛ1. Благодаря мастерству специалистов нашей компании, заказчик получит переходные пластины безупречного качества по самым низким ценам.

Медно-алюминиевые пластины, которые также изготавливаются нашей компанией, позволяют состыковать алюминиевые, медные шины с медными выводами электротехнических устройств. Данные пластины производятся методом холодной сварки давлением. Эти пластины можно соединять с алюминиевыми шинами сваркой, а с медными шинами и выводами с помощью болтов, которое называется разборным соединением.

Наша компания гарантирует, что медно-алюминиевые переходные пластины будут изготовлены со строгим соблюдением всех технических требований. Данные пластины производятся из медной полосы (шины), алюминиевого профиля по стандартам ГОСТа 19357-81 и строго по чертежам. На пластинах имеется плакировка двухсторонней медной полосой, которая присоединяется холодной сваркой. Медно-алюминиевая пластина в нашей компании производится без всяких шероховатостей, свищей, трещин и наползаний меди на алюминий. Медная часть пластины защищена металлическим покрытием.

Переходные пластины, как алюминиевые, так и медно-алюминиевые, испытываются специалистами нашей компании по следующим методам:

испытание на изгиб;

проверка размеров соответствия ГОСТу и представленным чертежам;

проверка на массу и правильность маркировки;

проверка на соответствие типа металла и нанесенного металлопокрытия;

Переходные пластины имеют тот же срок эксплуатации, что и электротехническое устройство, в котором они применяются.

Пластина медно-алюминиевая переходная МА


Пластины переходные медно-алюминиевые ГОСТ 19357-81 служат для присоединения алюминиевых шин к медным выводам электротехнических устройств и медным шинам. Соединение с алюминиевыми шинами сварное, соединение с медными выводами электротехнических устройств и медными шинами - либо разборное (болтовое), либо сварное.

Вид климатического исполнения пластины МА - УХЛ1и Т1 по ГОСТ 19357-81 . Соединение алюминиевой части пластины МА с медной выполняется методом холодной сварки давлением.

Пример условного обозначения переходной медно-алюминиевой пластины исполнения УХЛ1:

Пластина переходная МА 40х4 УХЛ1 ГОСТ 19357-81

Пластина переходная МА 50х6 УХЛ1 ГОСТ 19357-81

Пластина переходная МА 60х8 УХЛ1 ГОСТ 19357-81

Пластина переходная МА 80х8 УХЛ1 ГОСТ 19357-81

Пластина переходная МА 100х10 УХЛ1 ГОСТ 19357-81

Пластина переходная МА 120х10 УХЛ1 ГОСТ 19357-81

Пластины изготавливаются в соответствии с требованиями настоящего стандарта по рабочим чертежам, утвержденным в установленном порядке. Поверхность платин МА не имеет заусенцев, трещин, задиров, отслаивания металла и других механических повреждений. Проверка качества сварного шва, поверхности пластины МА осуществляется визуальным способом.

Технические характеристики - пластина переходная медно алюминиевые МА

пластины МА 40х4, МА 50х6, М 60х8, М 80х8, МА100х10, МА120х10

Пластины переходные медно-алюминиевые предназначены для присоединения шин из алюминия к медным выводам различных электротехнических устройств, а также к шинам из меди.

Пластины переходные медно-алюминиевые имеют сварные соединения с алюминиевой шиной, а также разборное (болтовое) с медными выводами. Сами пластины изготавливаются по методу так называемой контактной сварки или холодной сварки под давлением.

Нормируются пластины переходные медно-алюминиевые полностью соответствуя государственному стандарту, а именно стандарту 19357-81. Согласно ему подобные пластины подразделяются на следующие типы:

с равновеликим сечением со сварным соединением для безразборных шин;

плакированные и равновеликие по степени своей электрической проводимости для разборных шин.

Что касается соединительного шва переходной пластины, который имеет место быть при соединении медной пластины с алюминиевой, то он обязательно должен очищаться от шлама и грата. Более того, он должен быть выполнен без каких-либо трещин и свищей. Пластины переходные медно-алюминиевые не должны иметь на своей поверхности какие-либо механические повреждения, например, заусенцы, задиры, отслаивания, трещины.

Соответствуя государственному стандарту, а именно стандарту 10434-82, на медной области пластины обязаны находиться предохраняющие металлические покрытия. Хотя, если пластины переходные произведены в соответствии с определенными климатическими условиями по государственному стандарту 15150-69 исполнения «Т», то они как раз подобных покрытий не имеют.

Согласно специальным техническим требованиям пластины переходные медно-алюминиевые при изгибе в восемнадцать градусов должны выравниваться в исходное положение. Что касается сварного соединения переходной пластины, то оно должно полностью соответствовать госстандарту 10434-82. Срок эксплуатации такого изделия, как пластины переходные медно-алюминиевые, ни в коем случае не может быть меньше, чем аналогичные показатели для всего электротехнического устройства, где они используются.

Проверка таких пластин на предмет соответствия с государственным стандартом 19357-81 осуществляется при приеме предприятием-изготовителем, сдаче, а также согласно типовым и периодическим испытаниям. Подобные испытания осуществляются по случайной выборке. Если результаты проведенных испытаний окажутся неудовлетворительными, берут из той же партии удвоенное количество пластин и проводят испытания снова. Если результат повториться, то вся партия, как правило, признается негодной.

  • Заказать продукцию на сайте.
  • Интернет магазин электротехнической продукции.
  • ООО "ЭлТекс" Контакты: +79184692483 +79184822755 [email protected]
  • Представим Ваши интересы в Краснодарском крае и ЮФО. Поставки любой электротехнической продукции по вашим реквизитам.
  • Всё для проведения электромонтажных и кабельных работ. Всё для электромонтажных организаций.
  • Поставки электротехнической продукции для электромонтажных, строительны и торговых организаций и др.
  • Кабельные термоусаживаемые муфты POLT,POLJ,GUST,GUSJ, SMOE,EPKT,TRAJ и другие системы Raychem для любого кабеля. Адаптеры RICS и др. Ремонтные манжеты для кабеля.
  • Кабельные термоусаживаемые муфты КВТп КНТп СТп для любого кабеля
  • Кабельные муфты "Cellpack Electrical Product"
  • Кабельные муфты,адапторы, инструмент для разделки кабеля EUROMOLD а Nexans Company. Кабельная арматура, адаптеры, инструмент Euromold , GPH , Tyco Electronics Raychem
  • Кабельные муфты фирмы 3М и др заводов.Натяжные муфты. Муфты для подводного кабеля и саморегулируемого нагревательного кабеля.
  • Термоусаживаемые ремонтные манжеты для кабеля. Уплотнители кабельных проходов термоусаживаемые УКПТ.
  • Инструмент для кабельных и электромонтажных работ в т.ч. снятиe изоляции с любого кабеля. Ножи для проведения кабельных и электромонтажных работ
  • Инструмент для снятия изоляции с любого кабеля в т. ч. с кабеля из сшитого полиэтилена
  • Наборы инструментов для кабельных и электромонтажных работ в т.ч снятие изоляции с любого кабеля. Наборы инструментов для электромонтажника, электрика, кабельщика, кабельщика-спайщика, релейщика, сварщика, аккумуляторщика и др.
  • Инструмент для электромонтажных организаций.
  • Всё для перемотки, размотки, смотки, протяжки кабеля, провода, троса, каната. Оборудование, станки, стелажи, стойки, ролики, вертлюги, домкраты, ролики и др. Измерители длины кабеля.
  • Оборудование для перемотки и протяжки кабеля. Кабельные домкраты.
  • Смазки (УВС) Суперконт, Примаконт и Экстраконт для защиты электрических контактных соединений от перегрева и окисления.
  • Станки для перемотки, размотки, намотки кабеля. Кабелеукладчики. Гидравлические натяжные машины. Толкатели кабельные.
  • Электромонтажный пороховой инструмент.Устройства дистанционного и механического прокола кабеля.Пороховой пресс.