Сегвей. Простота и экологичные технологии

Потребительское отношение человечества к природе уже привело к непоправимым последствиям. Международная группа экспертов по изменениям климата ООН признала, что именно нерациональное и безответственное отношения «гомо сапиенса» к природе стало причиной быстрых изменений климата на протяжении последних пятидесяти лет. Возрастающие из года в год выбросы парниковых газов уже привели к повышению температуры планеты на один градус, таянию ледников, загрязнению атмосферы, непрогнозируемым засухам и наводнений. Но экологи отмечают: благотворно повлиять на окружающую среду способен каждый человек. Достаточно выполнить несколько простых действий.

Пересесть на . Этот двухколесный вид транспорта уже давно стал символом экологически чистого и экономного перемещения на небольшие дистанции. Ведь в развитых странах наличие автомобиля уже давно перестало быть индикатором социального статуса. Теперь модно иметь велосипед - транспорт будущего, которому не страшны пробки и глобальный топливный кризис. Он относительно дёшев, манёврен, автономен, бесперебоен, не боится бездорожья и прост в управлении.

К сожалению, на постсоветском пространстве популярность велосипеда как средства передвижения пока довольно низка. К тому же, нет специальных дорожек для «двухколесных коней», а автомобилисты не желают признавать велосипедистов полноценными участниками дорожного движения.

Между тем, велосипед не загрязняет воздух, а езда на нем даже снижает вероятность развития астмы и других лёгочных заболеваний. Эксперты говорят: если пересадить всех владельцев личных автомобилей на общественный транспорт и велосипеды, выброс в атмосферу Земли уменьшится почти на треть. К тому же, велосипеды занимают меньше места, чем , а значит – отчасти решается проблема пробок и стоянок для транспорта.

Разделять мусор. В контейнере для мусора обычно лишь 15% отходов, которые не поддаются переработке. Зато накопленную бумагу, пластиковые и стеклянные бутылки, металлолом – все это можно отвести в специальный пункт приема вторсырья, даже заработав на своем мусоре деньги. Или хотя бы выбросить в специальные контейнеры, которые сегодня стоят практически в каждом жилом дворе. А польза от переработки мусора очевидна: 60 кг макулатуры спасает целое дерево; переработка 1 т макулатуры экономит 200 куб воды и 1000 кВт электроэнергии; переработка 1 т пластика экономит 750 кг нефти; а 670 алюминиевых банок из-под пива или газированной воды хватит на то, чтобы из переработанного материала создать велосипед.

Заменить лампочки на энергосберегающие. Замена классических ламп накаливания (мощностью 40-100 Вт) на люминесцентные (мощностью 7-25 Вт) помогут сократить потребление электроэнергии в любом помещение более, чем в 4 раза. Энергосберегающие лампы не только ярче светят, но служат в 6-8 раз дольше, чем классическая лампочка.

Разумно относиться к воде. Установка счетчика воды не только поможет сэкономить средства в семейном бюджете, но и повлияет на сокращение потребления объемов воды. Экологи подчеркивают: большинство людей любят кипятить больше воды, чем им на самом деле требуется. Но если хотя бы 15 семей наливали в чайник столько воды, сколько используют, выбросы углекислого газа сократились бы на тонну в год. Экономить воду помогает и устранение всех протечек в водопроводе: струйка воды толщиной со спичку приводит к вытеканию 480 л воды в сутки. При этом отказ от ванны в пользу душа помогает сэкономить около 75 л воды в день, а за месяц набегает больше двух кубов. Кроме того, экологи отмечают, что треть воды, используемой в быту, уходит на спуск в туалете. Так что не стоит использовать унитаз как мусорное ведро: на каждый слив расходуется 10-12 литров чистой воды.

Утеплять жилище. Даже простое уплотнение окон и дверей способно повысить температуру в помещении на 1-2 градуса, а значит – сократить расход энергии на обогрев жилья. Разместив за батареей простейший экран из фольги можно увеличить эффективность обогрева комнаты на 5-10%. А полноценная теплоизоляция стен специальными утеплителями обеспечит комфортное проживание в помещении на протяжении всего года. Ведь хорошая теплоизоляция позволит не только удержать тепло в зимний период, но и не допустить перегрева комнаты во время летный жары.

Сажать деревья. Всем известно, что леса – легкие планеты, а деревья – основные «борцы» с глобальным потеплением. В среднем одно взрослое дерево за 20-50 лет (в зависимости от его длины и объема кроны) поглощает тонну углекислого газа. А еще - задерживает поверхностные потоки воды и переводит ее в почву, предотвращая тем самым сильные паводки и наводнения. Недаром из-за вырубки карпатских лесов Закарпатье ежегодно страдает от сильных наводнений. Деревья возле дома – это своеобразный фильтр, который гарантирует чистый и свежий воздух. Они поглощают лишний шум, а зимой становятся своеобразной защитой от холодного ветра. Нельзя забывать и об эстетической стороне – кроме зеленой кроны и шелеста листвы деревья «гарантируют» регулярное мелодичное пенье птиц.

Правильно питаться. Для производства растительной пищи требуется значительно меньше природных ресурсов, чем для пищи животного происхождения: для 1 кг вегетарианской еды используется в десять раз меньше ресурсов, чем для получения 1 кг мяса. Поэтому диетологи и экологи советуют хотя бы раз в неделю устраивать «вегетарианский» день. С одной стороны, отказ от употребления животной пищи позволит разгрузить роботу организма, с другой – сэкономить некоторое количество природных ресурсов.

Начну я с того, что приведу немного известных мне исторических фактов, а позже объясню, почему я окунулась в историю. На сколько мне известно, первый велосипед был изобретён англичанином Джоном Кемпом Старли в 1884 году. Первые модели появились в продаже уже годом позднее и пользовались огромным спросом. Затем стали появляться: складной велосипед в 1987, велосипед на котором можно ездить в лежачем положении – лигерад. Также позднее рамы стали делать из титана, а уже 1975 году появились первые модели, которые сделаны из углепластика. Ближе к началу 1990 года конструкторами был изобретён многоскоростной велосипед.

Конструкция традиционного велосипеда известна всем, она состоит из: колёса и рама, вилка и руль, некоторые оборудованы системой передач, тормоза на переднее и заднее колесо, седло и конечно педали. Я назвала только самые основные элементы и сделала это очень обобщённо, так как не смотря на всё простоту, каждый элемент требует своевременного обслуживания, а если обслуживанием пренебрегать, то очень скоро ремонт велосипеда перейдёт из категории «возможно», в категорию «я так и знала». И хорошо, если у вас будет возможность попасть к хорошему веломастеру, который надлежащим образом отремонтирует ваш велосипед, в противном случае можно остаться совсем без своего высокотехнологичного любимца.

Я порой думаю, что современный мир сложно представить без велосипеда, это очень удобный способ перемещения. Даже полиция многих странах активно приобретает себе этот простой вид транспорта, мне как-то довелось наблюдать как на велосипедах работают полицейские в большом парке, на машине по узким пешеходным дорожкам точно не проедешь. А велосипедные гонки, там конечно используются специально изготовленные велосипеды, но за счёт этого они в состоянии развивать огромные скорости. Велосипеды нашли широкое применение даже в туризме и сегодня активный отдых на природе сложно, а некоторым и невозможно представить без велосипеда.

Распространённость и доступность велосипедов требует задумываться о безопасности во время поездок. Учитывая то, что велосипед практически бесшумно передвигается, во многих странах является обязательным наличие установленного на нём сигнала. Также обязательным является наличие шлема, проблесковых световых сигналов, а также светоотражателей. Велосипедист является таким же участником движения, как и все остальные, поэтому должен соблюдать ПДД. Перед тем, как выехать на дорогу общего пользования, стоит прочесть правила также обязательно выучить жесты рукой, подаваемые при совершении какого-либо манёвра.

Чтобы не придумали технические гении нашего века, а классический велосипед приводится в движение при помощи мускульной силы человека. При вращении педалей, которые связаны цепью со звёздочкой заднего колеса, начинает вращаться и заднее колесо, и велосипед начинает ехать. Современный велосипед может быть оснащён большим количеством передач, что облегчает движение по просёлочной дороге или по асфальту, или при крутых подъёмах. Руль в разных моделях может быть непохожими друг на друга, но назначение у него одно – управление велосипедом. Также к рулю обычно крепятся световые приборы, а также рычаги тормозов и переключения передач, а у меня там крепится и велосипедный компьютер.

Энергетика является сердцем промышленного и сельскохозяйственного производства и обеспечивает комфортное существование человека. Основным энергоносителем XIX века являлся уголь, сжигание которого приводило к росту выбросов дыма, сажи, копоти, золы, вредных газовых компонентов: CO, SO 2 , оксидов азота и т.д. Развитие научно-технического прогресса привело к существенному изменению энергетической базы промышленности, сельского хозяйства, городов и других населенных пунктов. Значительно возросла доля таких энергоносителей, как нефть и газ, экологически более чистых, чем уголь. Однако их ресурсы небеспредельны, что накладывает на человечество обязанность поиска новых альтернативных источников энергии.

К ним относятся солнечная и атомная энергия, геотермальный и гелиотермальные виды энергии, энергия приливов и отливов, энергия рек и ветров. Эти виды энергии являются неисчерпаемыми, и их производство практически не оказывает вредного воздействия на окружающую среду.

В настоящее время наиболее развиты атомные энергетические установки – АЭС. Доля производства электроэнергии с помощью атомной энергии в ряде стран очень высока: в Литве она превышает 80%, во Франции – 75%, в России достигает 13%. Следует совершенствовать безопасность работы АЭС, что подтвердила авария на Чернобыльской и других АЭС. Топливная база для их работы практически неограничена, общие запасы урана в морях и океанах составляют примерно 4·10 9 т.

Достаточно широко применяются геотермальные и гелиотермальные источники энергии. Циркулирующая на глубине 2-3 км вода нагревается до температуры, превышающей 100ºС за счет радиоактивных процессов, химических реакций и других явлений, протекающих в земной коре. В ряде районов земли такие воды выходят на поверхность. Значительные запасы их имеются в нашей стране на Дальнем Востоке, в Восточной Сибири, на Северном Кавказе и других районах. Существуют запасы высокотемпературного пара и пароводяной смеси на Камчатке, Курильских островах и в Дагестане.

Технологические процессы получения тепловой и электрической энергии из таких вод достаточно хорошо разработаны, их себестоимость в 2–2,5 раза ниже тепловой энергии, получаемой в обычных котельных. На Камчатке работает геотермальная электростанция мощностью 5 кВт. Предполагается сооружать такие, но более мощные – 100 и 200 МВт блоки. В Краснодарском крае теплота подземных вод используется для теплоснабжения промышленных предприятий, населения, животноводческих комплексов, многочисленных теплиц.

В последнее время все шире используется солнечная энергия . Солнечные энергетические установки могут быть тепловыми, в которых используется традиционный паротурбинный цикл, и фотоэлектрическими, в которых солнечное излучение с помощью специальных батарей преобразуется в электроэнергию и теплоэнергию. Стоимость таких гелиоэлектростанций пока еще велика. Для станций мощностью в 5–100 МВт она в 10 раз превышает капитальные затраты ТЭС аналогичной мощности. Кроме того, для получения энергии требуются большие площади зеркал. Солнечные электростанции являются перспективными, так как они экологически чистые, а стоимость произведенной на них электроэнергии будет неуклонно снижаться по мере совершенствования технологических процессов, оборудования и используемых материалов.

Вода с давних пор используется человечеством в качестве источника энергии. ГЭС остаются перспективными и экологически чистыми энергетическими установками при условии, если при их строительстве не происходит затопления пойменных земель и лесных угодий.

К новым источникам энергии относится энергия морских приливов и отливов . Принцип действия приливных электростанций основан на том, что энергия падения воды, проходящей через гидротурбины, вращает их и приводит в движение генераторы электрического тока. На однобассейновой приливной электростанции двойного действия, работающей во время прилива и отлива, можно вырабатывать энергию четыре раза в сутки при наполнении и опорожнении бассейна в течение 4-5 часов. Агрегаты такой электростанции должны быть приспособлены для работы в прямом и обратном режимах и служить как для производства электроэнергии, так и для перекачки воды. Крупная приливная электростанция работает во Франции на берегу Ла-Манша, в устье реки Ранс. В России в 1968 г. пущена в эксплуатацию небольшая электростанция на побережье Баренцева моря в губе Кислов. Разработаны проекты Мезенской приливной станции на берегу Белого моря, а также Пенжинской и Тугурской – на берегу Охотского моря.

Энергию океана можно использовать, сооружая волновые электростанции, установки, использующие энергию морских течений, разницу температур поверхностных теплых и глубинных холодных вод или подледных слоев воды и воздуха. Проекты таких энергетических установок разрабатываются в ряде стран: США, Японии, России.

Перспективно использование энергии ветра . Ветроэнергетические установки до определенного предела не влияют на состояние окружающей среды. Парки ветроэнергетических установок большой мощности построены в Германии, Дании, США и других странах. Единичная мощность таких установок достигает 1 МВт. В Швеции работает самая сильная в мире ветроэнергетическая установка мощностью 2 МВт. В России имеются районы, благоприятные для строительства ветровых электростанций – на Крайнем Севере, Азово-Черноморском регионе, где постоянно дуют северо-восточные ветры. Потенциальные мощности ветровых электростанций, которые могут быть построены на этих территориях, значительно превышают мощности существующих в настоящее время в России электростанций. Экологическая целесообразность использования энергии ветра для производства электроэнергии в больших масштабах и использования ветроэнергетических установок в энергетических системах пока изучена недостаточно хорошо. Исследования, проведенные в США, свидетельствуют о том, что если затраты на сооружение подземных хранилищ нефти объемом в 1 млрд баррелей в совокупности со стоимостью этой нефти направить на строительство ветровых электростанций, то их мощность может быть доведена до 37000 МВт, а количество сэкономленной нефти составит 1,15 млрд баррелей. В результате помимо экономии такого ценного сырья, как нефть существенно снизится вредная нагрузка на окружающую среду при ее сжигании в энергетических установках.

Серьезным источником вредных веществ в окружающей среде является транспорт. В настоящее время рассматривается возможность замены используемого сейчас углеводородного топлива на чистый водород, при сгорании которого образуется вода. Это позволило бы исключить проблему загрязнения атмосферы отработанными газами автомобильных двигателей. Использование водорода затрудняется тем, что в настоящее время недостаточно отработана технология его получения, транспортировки и хранения, что приводит к большим затратам электроэнергии при производстве водорода методом электролиза и его высокой стоимости. Совершенствование указанных технологических процессов позволит снизить стоимость водорода, который станет топливом, способным конкурировать по экономическим показателям с традиционными видами топлива, а по экологическим – превосходить их.

Замена автомобилей, работающих на углеводородном топливе, электромобилями также позволит существенно снизить вредную нагрузку на окружающую среду. Исследования американских и японских фирм в этой области свидетельствуют о том, что их лучшие электромобили, работающие на никелево-цинковых батареях, вдвое мощнее, чем обычные свинцовые при скорости 80 км/час и имеют дальность пробега около 400 км. Общий коэффициент полезного действия таких электромобилей в настоящее время невелик и составляет 2% против 4,2% автотранспорта, работающего на углеводородном сырье. По мере совершенствования технологии изготовления аккумуляторных батарей электромобили будут использоваться все шире, что позволит уменьшить вредное воздействие на окружающую среду.

Экологически чистые источники энергии


Лекция 12 Энергетика является сердцем промышленного и сельскохозяйственного производства и обеспечивает комфортное существование человека. Основным энергоносителем XIX века являлся уголь,

Экологически чистые источники энергии

«Экологически чистая энергия» («Зеленая энергия») - энергия из источников, которые, по человеческим масштабам, являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из постоянно происходящих в окружающей среде процессов и предоставлении для технического применения. Возобновляемую энергию получают из природных ресурсов, таких как: солнечный свет, водные потоки, ветер, приливы и геотермальная теплота, которые являются возобновляемыми (пополняются естественным путем).

В 2013 году около 21 % мирового энергопотребления было удовлетворено из возобновляемых источников энергии.

Резервуар для производства биогаза, фотоэлектрические панели и ветрогенератор

В 2006 году около 18 % мирового потребления энергии было удовлетворено из возобновляемых источников энергии, причем 13 % из традиционной биомассы, таких, как сжигание древесины. В 2010 году 16,7 % мирового потребления энергии поступало из возобновляемых источников. В 2013 году этот показатель составил 21 %. Доля традиционной биомассы постепенно сокращается, в то время как доля современной возобновляемой энергии растёт.

Гидроэлектроэнергия является крупнейшим источником возобновляемой энергии, обеспечивая 3,3 % мирового потребления энергии и 15,3 % мировой генерации электроэнергии в 2010 году. Использование энергии ветра растет примерно на 30 процентов в год, по всему миру с установленной мощностью 318 гигаватт (ГВт) в 2013 году, и широко используется в странах Европы, США и Китае. Производство фотоэлектрических панелей быстро нарастает, в 2008 году было произведено панелей общей мощностью 6,9 ГВт (6900 МВт), что почти в шесть раз больше уровня 2004 года. Солнечные электростанции популярны в Германии и Испании. Солнечные тепловые станции действуют в США и Испании, а крупнейшей из них является станция в пустыне Мохаве мощностью 354 МВт. Крупнейшей в мире геотермальной установкой, является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт.

Бразилия проводит одну из крупнейших программ использования возобновляемых источников энергии в мире, связанную с производством топливного этанола из сахарного тростника. Этиловый спирт в настоящее время покрывает 18 % потребности страны в автомобильном топливе. Топливный этанол также широко распространен в США.

Источники возобновляемой энергии

Термоядерный синтез Солнца является источником большинства видов возобновляемой энергии, за исключением геотермической энергии и энергии приливов и отливов. По расчётам астрономов, оставшаяся продолжительность жизни Солнца составляет около пяти миллиардов лет, так что по человеческим масштабам возобновляемой энергии, происходящей от Солнца, истощение не грозит.

В строго физическом смысле энергия не возобновляется, а постоянно изымается из вышеназванных источников. Из солнечной энергии, прибывающей на Землю, лишь очень небольшая часть трансформируется в другие формы энергии, а бо́льшая часть просто уходит в космос.

Использованию постоянных процессов противопоставлена добыча ископаемых энергоносителей, таких как каменный уголь, нефть, природный газ или торф. В широком понимании они тоже являются возобновляемыми, но не по меркам человека, так как их образование требует сотен миллионов лет, а их использование проходит гораздо быстрее.

Это отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, тепловую и любую другую форму энергии для использования в народном хозяйстве. Преобразование происходит с помощью ветрогенератора (для получения электричества), ветряных мельниц (для получения механической энергии) и многих других видов агрегатов. Энергия ветра является следствием деятельности солнца, поэтому она относится к возобновляемым видам энергии.

Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Наиболее перспективными местами для производства энергии из ветра являются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

В перспективе планируется использование энергии ветра не посредством ветрогенераторов, а более нетрадиционным образом. В городе Масдар (ОАЭ) планируется строительство электростанции работающей на пьезоэффекте. Она будет представлять собой лес из полимерных стволов покрытых пьезоэлектрическими пластинами. Эти 55-метровые стволы будут изгибаться под действием ветра и генерировать ток.

Офшорный ветропарк на севере Великобритании

На этих электростанциях, в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободно поточных (бесплотинных) ГЭС.

– Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций

– Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии

– Возобновляемый источник энергии

– Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций

– Строительство ГЭС обычно более капиталоёмкое

– Часто эффективные ГЭС более удалены от потребителей

– Водохранилища часто занимают значительные территории

– Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

На океанских течениях

На 2010 год гидроэнергетика обеспечивает производство до 76 % возобновимой и до 16 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 1015 ГВт. Лидерами по выработке гидроэнергии на гражданина являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

Энергия приливов и отливов

Электростанциями этого типа являются особого вида гидроэлектростанции, использующие энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроакумулирующая электростанция.

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками - высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

Волновые электростанции используют потенциальную энергию волн переносимую на поверхности океана. Мощность волнения оценивается в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает большей удельной мощностью. Несмотря на схожую природу с энергией приливов, отливов и океанских течений волновая энергия представляет собой отличный от них источник возобновляемой энергии.

Энергия солнечного света

Данный вид энергетики основывается на преобразовании электромагнитного солнечного излучения в электрическую или тепловую энергию.

Солнечные электростанции используют энергию Солнца как напрямую (фотоэлектрические СЭС работающие на явлении внутреннего фотоэффекта), так и косвенно - используя кинетическую энергию пара.

Крупнейшая фотоэлектрическая СЭС Topaz Solar Farm имеет мощность 550 МВт. Находится в штате Калифорния, США.

К СЭС косвенного действия относятся:

Башенные - концентрирующие солнечный свет гелиостатами на центральной башне, наполненной солевым раствором.

Модульные - на этих СЭС теплоноситель, как правило масло, подводится к приемнику в фокусе каждого параболо-цилиндрического зеркального концентратора и затем передает тепло воде испаряя её.

Солнечные пруды - представляют собой небольшой бассейн глубиной в несколько метров имеющий многослойную структуру. Верхний - конвективный слой - пресная вода; ниже расположен градиентный слой с увеличивающейся книзу концентрацией рассола; в самом низу слой крутого рассола. Дно и стенки покрыты чёрным материалом для поглощения тепла. Нагрев происходит в нижнем слое, так как рассол имеет более высокую по сравнению с водой плотность увеличивающуюся при нагреве из-за лучшей растворимости соли в горячей воде, конвективного перемешивания слоёв не происходит и рассол может нагреваться до 100 °C и более. В рассольную среду помещён трубчатый теплообменник по которому циркулирует легкокипящая жидкость (аммиак, фреон и др.) и испаряется при нагреве передавая кинетическую энергию паровой турбине. Крупнейшая электростанция подобного типа находится в Израиле, её мощность 5 Мвт, площадь пруда 250 000 м2, глубина 3 м

Topaz Solar Farm

Электростанции данного типа представляют собой теплоэлектростанции использующие в качестве теплоносителя воду из горячих геотермальных источников. В связи с отсутствием необходимости нагрева воды ГеоТЭС являются в значительной степени более экологически чистыми нежели ТЭС. Строятся ГеоТЭС в вулканических районах, где на относительно небольших глубинах вода перегревается выше температуры кипения и просачивается к поверхности, иногда проявляясь в виде гейзеров. Доступ к подземным источникам осуществляется бурением скважин.

Данная отрасль энергетики специализируется на производстве энергии из биотоплива. Применяется в производстве, как электрической энергии, так и тепловой.

Биотопливо первого поколения

Биото́пливо - топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различают:

твёрдое биотопливо (лес энергетический: дрова, брикеты, топливные гранулы, щепа, солома, лузга), торф;

жидкое биотопливо (для двигателей внутреннего сгорания, например, биоэтанол, биометанол, биобутанол, диметиловый эфир, биодизель);

газообразное (биогаз, биоводород, метан).

Биотопливо второго поколения

Биотопливо второго поколения - разнообразные виды топлива, получаемые различными методами пиролиза биомассы, или прочие виды топлива, помимо метанола, этанола, биодизеля получаемые из источников сырья «второго поколения». Быстрый пиролиз позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно произвести автомобильное топливо, или топливо для электростанций.

Источниками сырья для биотоплива второго поколения являются лигно-целлюлозные соединения, остающиеся после того, как пригодные для использования в пищевой промышленности части биологического сырья удаляются. Использование биомассы для производства биотоплива второго поколения направленно на сокращение количества использованной земли, пригодной для ведения сельского хозяйства. К растениям - источникам сырья второго поколения относятся:

Водоросли - простые живые организмы, приспособленные к росту и размножению в загрязнённой или солёной воде (содержат до двухсот раз больше масла, чем источники первого поколения, таких как соевые бобы);

По оценкам Германского Энергетического Агентства (Deutsche Energie-Agentur GmbH) (при ныне существующих технологиях) производство топлив пиролизом биомассы может покрыть 20 % потребностей Германии в автомобильном топливе. К 2030 году, с развитием технологий, пиролиз биомассы может обеспечить 35 % германского потребления автомобильного топлива. Себестоимость производства составит менее €0,80 за литр топлива.

Весьма перспективно также использование жидких продуктов пиролиза древесины хвойных пород. Например, смесь 70 % живичного скипидара, 25 % метанола и 5 % ацетона, то есть фракций сухой перегонки смолистой древесины сосны, с успехом может применяться в качестве замены бензина марки А-80. Причём для перегонки применяются отходы дереводобычи: сучья, пень, кора. Выход топливных фракций достигает 100 килограммов с тонны отходов.

Биотопливо третьего поколения

Биотопливо третьего поколения - топлива, полученные из водорослей.

Департамент Энергетики США с 1978 года по 1996 года исследовал водоросли с высоким содержанием масла по программе «Aquatic Species Program». Исследователи пришли к выводу, что Калифорния, Гавайи и Нью-Мексико пригодны для промышленного производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1 000 м2. Пруд в Нью-Мексико показал высокую эффективность в захвате СО2. Урожайность составила более 50 граммов водорослей с 1 м2 в день. 200 тысяч гектаров прудов могут производить топливо, достаточное для годового потребления 5 % автомобилей США. 200 тысяч гектаров - это менее 0,1 % земель США, пригодных для выращивания водорослей. У технологии ещё остаётся множество проблем. Например, водоросли любят высокую температуру (для их производства хорошо подходит пустынный климат), однако требуется дополнительная температурная регуляция, защищающая выращиваемую культуру от ночных понижений температуры («похолоданий»). В конце 1990-х годов технология не была запущена в промышленное производство в связи с относительно низкой стоимостью нефти на рынке.

Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимого для выращивания водорослей. Данная технология выращивания культуры водорослей защищена от суточных колебаний температуры, не требует жаркого пустынного климата - то есть может быть применена практически на любой действующей ТЭЦ.

Меры поддержки возобновляемых источников энергии

На данный момент существует достаточно большое количество мер поддержки ВИЭ. Некоторые из них уже зарекомендовали себя как эффективные и понятные участникам рынка. Среди таких мер стоит более подробно рассмотреть:

– Возмещение стоимости технологического присоединения;

– Тарифы на подключение;

– Система чистого измерения;

Под зелеными сертификатами понимаются сертификаты, подтверждающие генерацию определенного объёма электроэнергии на основе ВИЭ. Данные сертификаты получают только квалифицированные соответствующим органом производители. Как правило, зелёный сертификат подтверждает генерацию 1Мвт ч, хотя данная величина может быть и другой. Зелёный сертификат может быть продан либо вместе с произведенной электроэнергией, либо отдельно, обеспечивая дополнительную поддержку производителя электроэнергии. Для отслеживания выпуска и принадлежности «зеленых сертификатов» используются специальные программно-технические средства (WREGIS, M-RETS, NEPOOL GIS). В соответствии с некоторыми программами сертификаты можно накапливать (для последующего использования в будущем), либо занимать (для исполнения обязательств в текущем году). Движущей силой механизма обращения зеленых сертификатов является необходимость выполнения компаниями обязательств, взятых на себя самостоятельно или наложенных правительством. В зарубежной литературе «зеленые сертификаты» известны также как: Renewable Energy Certificates (RECs), Green tags, Renewable Energy Credits.

Возмещение стоимости технологического присоединения

Для повышения инвестиционной привлекательности проектов на основе ВИЭ государственными органами может предусматриваться механизм частичной или полной компенсации стоимости технологического присоединения генераторов на основе возобновляемых источников к сети. На сегодняшний день только в Китае сетевые организации полностью принимают на себя все затраты на технологическое присоединение.

Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки - $30 млрд, Китай - $15,6 млрд, Индия - $4,1 млрд.

В 2009 году инвестиции в возобновляемую энергетику во всём мире составляли $160 млрд, а в 2010 году - $211 млрд. В 2010 году в ветроэнергетику было инвестировано $94,7 млрд, в солнечную энергетику - $26,1 млрд и $11 млрд - в технологии производства энергии из биомассы и мусора.

Экологически чистые источники энергии - Главная страница


Экологически чистые источники энергии Вход на сайт Друзья сайта Статистика Главная страница «Экологически чистая энергия» («Зеленая энергия») - энергия

Экологически чистые нетрадиционные системы технологий энергетики

Экономически оправданным источником концентрированной энергии является органическое топливо: нефть, газ, уголь. В последнее десятилетие в ряд с тепловой энергетикой стала ядерная. Экологические проблемы этих видов энергетики общеизвестны. Но не только экологические. Опыт эксплуатации АЭС показал, что сегодня существует важные экономические проблемы, которые в предыдущие годы не учитывали. Обнаружилось, что затраты на поддержание экологических норм загрязнения окружающей среды радионуклидами таковы, что ближайшее будущее атомной энергетики пока что не предвидено. Это заставило в последние годы вести энергичные поиски альтернативных источников энергии. Сегодня природных экологически чистых источников энергии известно немало. Основная проблема – это низкое качество (концентрация) всех известных на сегодня альтернативных видов энергии и, соответственно, низкая экономическая эффективность ее конверсии в высококонцентрированную форму.

Рис. 3.5. Ветровой электрогенератор

1 – электрогенератор; 2 – редуктор; 3 – вал; 4 – основа электроблока; 5 – регулятор лопастей; 6 – лопасть; 7 – электрокабель; 8 – контрольный блок.

Анализируя различные возможные альтернативные источники энергии, следует помнить, что во всех без исключения случаях, чтобы эксплуатировать энергоснабжающую технологию, необходимо на обеспечение ее функционирования тоже расходовать энергию соответствующего качества. Важно подбирать для каждого промышленного объекта наиболее рациональный по концентрации энергии источник, помня, что чем больше концентрация энергии, тем она дороже. Рассмотрим конверсии альтернативных форм энергии, которые сегодня используются в сельском хозяйстве.

Проблема конверсии энергии ветра не такая простая. Прежде всего, возникает вопрос качества ветровой энергии и ее ресурса. Принято считать, что на территории в 1 млн. км 2 энергетические ресурсы ветра составляют около 0,5 ГВт. Но с точки зрения концентрации ее использование для конверсии современной техникой в электрическую невелика. В бывшем СССР эксплуатировалось свыше 200 ветровых электрогенераторов общей мощностью около 1000 кВт. Одна установка типа АВЭУ-6 (автоматическая ветровая электрическая установка) в состоянии за сутки откачать из скважины глубиной 50м до 20м 3 воды или освещать и обогревать строение. Мощность современных ветровых турбоэлектрогенераторов составляет 50…100 кВт (рис. 3.5). Такие установки довольно широко применяют, например, в Дании, где имеются подходящие климатические условия с постоянными ветрами от 9,5 до 24 м/с. Безусловно, широкое применение ветровых турбогенераторов в значительной степени позволяет решить проблему снабжения электроэнергией на разных хозяйственных объектах в сельской местности и в быту. В Приазовье сейчас идет монтаж турбоэлектрогенераторов общей суммарной мощностью 50 МВт. Что касается решения проблемы промышленного энергоснабжения, то ставить такие задачи пока не реально.

Солнечные электростанции

Солнечная энергия – это универсальная движущая сила всего живого на нашей планете в ее оптимальном природном понимании. Сегодня человечество стремится увеличить использование солнечной энергии, непосредственно превращая лучевую энергию в тепловую и электрическую, хотя количество ее низкое (концентрация не превышает 1кВт на 1м 2 поверхности Земли). На Украине функционирует экспериментальная солнечная электростанция (СЭС) в Крыму. Принцип ее работы – концентрация солнечной энергии с отражением лучей Солнца с большой площади на меньшую с помощью зеркал. Такая система включает 1600 так называемых гелиостатов, каждый из которых состоит из 45 зеркал общей площадью 25 м 2 . Следовательно суммарная площадь зеркал 1600 х 25 = 40000 м 2 . Вся система зеркал с помощью автоматики и ПЭВМ наводится на Солнце и отражает его лучи на сравнительно небольшую площадь панели парогенератора, из которого пар (250 о С и 4МПа) направляется в паровую турбину, смонтированную в блоке с электрогенератором. Мощность такой СЭС –5 МВт, кпд чуть больше 10%, себестоимость электроэнергии значительно выше по сравнению с ТЭС.

Учитывая экологические преимущества СЭС, продолжается проектирование более мощных станций. С 1989 года в США на юге Калифорнии успешно работает промышленная солнечная электростанция мощностью 200 МВт. Такая электростанция в состоянии обеспечить потребности в электроэнергии 300-тысячного города. Цена 1кВтч электроэнергии этой станции составляет около 10 центов. Хотя с чисто экономической точки зрения такая солнечная электростанция не может конкурировать с тепловой, она безусловно есть экологически чистой альтернативой современной энергетике.

Геотермальные электростанции

На Украине уделяется значительное внимание геотермальной энергетике, котрая базируется на нетрадиционных возобновляемых источниках энергии, т.е. на тепловых источниках Земли. Ресурсы этого вида энергии составляют на Украине 150 млрд. т условного топлива.

Геотермальная электростанция – это тепловая электростанция, использующая тепловую энергию горячих источников Земли для выработки электроэнергии и теплоснабжения. Температура геотермальных вод может достигать 200 º С и более. В состав геотермальной электростанции входят:

а) буровые скважины, выводящие на поверхность пароводяную смесь или перегретый пар;

б) устройства газовой и химической очистки;

в) электроэнергетическое оборудование;

г) система технического водоснабжения и др.

Геотермальные электростанции дешевы, относительно просты, но получаемый пар имеет низкие параметры, что снижает их экономичность.

Сооружение геотермальных электростанций оправдано там, где термальные воды наиболее близко подходят к поверхности земли. В бывшем СССР первая геотермальная электростанция мощностью 5 МВт была построена на Камчатке, ее мощность была доведена до 11 МВт.

На Украине в настоящее время объединение “Укрэнергоресурсы” заказало предпроектные работы по двум ГеоТЭС – в Крыму и Львовской области. Проработки ведутся по комбинированной технологии – геотермальная энергия производит предварительный подогрев воды, которая затем при сжигании органического топлива преобразуется в пар. Кроме того, украинские специалисты пытаются использовать тепло воды в выработанных нефтяных и газовых скважинах (мини ГеоТЭС мощностью 4-5 кВт).

За рубежом – в Италии, Новой Зеландии, США, Японии, Исландии – ГеоТЭС используются главным образом как теплофикационные.

Экологически чистые нетрадиционные системы технологий энергетики


Экономически оправданным источником концентрированной энергии является органическое

Чистые источники энергии

В настоящее время проблема охраны природы и рационального использования её ресурсов приобрела огромное мировое значение. Человек осознает, что настало время позаботиться и о природе: она не может всё время отдавать, она не способна вынести нагрузки, которые от неё требует человек.

Ознакомимся с различными видами получения энергии и экспериментально исследуем два вида чистых источников энергии на моделях ветроэнергетической установки и солнечной электростанции.

1. Экологические проблемы источников энергии

На уроках географии мы получаем знания о природных ресурсах, условиях их залегания и методах добычи. Так же мы узнаем о том, какие страны обладают ими в полной мере, а какие зависят от поставок из-за рубежа. На уроках физики мы изучаем возможности получения различных видов энергии и превращения одного вида энергии в другой. Биология дает нам знания о том, как влияет окружающий мир на живые организмы, и, в частности на человека. Но человек, своей деятельностью меняет мир природы, и не в лучшую сторону.

Загрязнения, выбросы твердых веществ, двуокиси серы, оксидом углерода, азота, углеводородов от промышленных предприятий составляют около 97% суммарных выбросов. Происходит загрязнение водных ресурсов сточными водами, загрязнение атмосферы в результате выделения пыли и газообразных веществ. При сжигании органического топлива вся его масса превращается в отходы, причем продукты сгорания в несколько раз превышают массу использованного топлива за счет включения кислорода и азота воздуха (Рисунок 1).

Происходят многие существенные изменения в ландшафтах. При добывании ископаемых создаются огромные насыпи пустой породы (Рисунок 2). Они отрицательно влияют на водный режим окружающих земель в радиусе нескольких десятках километров: сохнут колодцы, скудеет растительность при формировании отвалов пород.

Всё, что перечислено, явно указывает на то, что переход на возобновляемые источники энергии неизбежен.

1.1.Возобновляемые источники энергии.

Возобновляемые ресурсы - природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не зависят от того, используются они или нет.

В современной мировой практике к возобновляемым источникам энергии (ВИЭ) относят водную, солнечную, ветровую, геотермальную, гидравлическую энергии; энергию морских течений, энергию волн, приливов, температурного градиента морской воды, разности температур между воздушной массой и океаном, энергию тепла Земли, энергию биомассы животного, растительного и бытового происхождения.

1.2.Невозобновляемые источники энергии.

Это источники энергии, которые используют природные ресурсы земли, в результате чего их запасы не восполняются. По прогнозам специалистов, даже при самом оптимистическом подходе, запасы наиболее удобных для использования и относительно недорогих видов топлива – нефти и газа при современных темпах их потребления будут в основном использованы через 30-50 лет. Кроме того эти ресурсы являются основным сырьем для химической промышленности, сжигая их мы на самом деле сжигаем огромное количество изделий из синтетических материалов.

Примеры невозобновляемых ресурсов: нефть, уголь, природный газ, торф, гидраты метана, руды металлов, лес.

Путь сжигания невозобновляемых запасов топлива отрицательно воздействует на окружающую среду. Нефть, разливаясь из танкеров, терпящих бедствие, губит мировой океан. добыча, и транспортировка, и переработка нефти сопряжена с вредными воздействиями на окружающую среду. Часто происходят разливы нефти в результате ее утечки из скважин или при транспортировке. Мы видим, какой вред наносят природе аварии нефтяных танкеров.

Гибнут рыбы и птицы, живущие на побережьях. Разливы нефти близко от берегов особенно вредны для морских птиц, икры и мальков рыб, обитающих около поверхности в прибрежных водах.

Горят нефтяные вышки, загрязняя атмосферу. При сжигании нефтепродуктов при переработке в атмосферу выбрасывается большое количество углекислого газа.

2. Возобновляемые источники энергии

Энергия ветра впервые использовалась на парусных судах, позже появились ветряные мельницы (Рисунок 3). Потенциал энергии ветра подсчитан более менее точно: по оценке Всемирной метеорологической организации ее запасы в мире составляют 170 трлн. кВт·ч в год. Ветроэнергоустановки разработаны и опробованы настолько основательно, что вполне прозаической выглядит картина сегодняшнего небольшого ветряка, снабжающего дом энергией вместе с фермой. Главным фактором использования ВЭУ является то, что это экологически чистый источник и он не требует затрат на защиту от загрязнения окружающей среды.

У энергии ветра есть несколько существенных недостатков. Она сильно рассеяна в пространстве, поэтому необходимы ветроэнергоустановки (ВЭУ), способные постоянно работать с высоким КПД. Ветер очень непредсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Ветроэнергостанции не безвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Но, эти недостатки можно уменьшить, а то и вовсе свести их на нет. В настоящее время ветроэнергоустановки (ВЭУ) способны эффективно работать при самом слабом ветре. Шаг лопасти винта автоматически регулируется таким образом, чтобы постоянно обеспечивалось максимально возможное использование энергии ветра, а при слишком большой скорости ветра лопасть столь же автоматически переводится во флюгерное положение, так что авария исключается.

Разработаны и действуют так называемые циклонные электростанции мощностью до ста тысяч киловатт, где теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный “циклон”, который вращает турбину. Такие установки намного эффективнее и солнечных батарей и обычных ветряков. Энергию ветра уже используют для зарядки мобильных телефонов (Рисунок 4).

Чтобы компенсировать изменчивость ветра, сооружают огромные “ветряные фермы”. Ветряки при этом стоят рядами на обширном пространстве. Такие “фермы” есть в США, во Франции, в Англии, но они занимают много места; в Дании “ветряную ферму” разместили на прибрежном мелководье Северного моря, где ветер устойчивее, чем на суше (Рисунок 5).

Выработка электроэнергии с помощью ветра имеет ряд преимуществ:

а) экологически чистое производство без вредных отходов;

б) экономия дефицитного дорогостоящего топлива (традиционного и для атомных станций);

г) практическая неисчерпаемость.

Места установки ВЭУ: на полях, где хорошие розы ветров, на морях, где преобладает разность давлений и создаются воздушные течения.

Эффективность ВЭУ зависит от режима и длительности работы, сезонной периодичности, от скорости и направления ветра.

Это мы проверим на экспериментальной установке.

2) Экспериментальная модель ВЭУ.

Она состоит из двух вентиляторов. Один из них имитирует ветер, а другой представляет собой работающую ВЭУ (Рисунок 6). Наша ВЭУ соединена через компьютер с преобразователем энергии ветра в электрическую энергию, в механическую энергию, энергию радиотелефонной связи колебательного контура приемника. На панели установки находится тумблер, переключающий все эти функции.

а) Первый эксперимент заключается в следующем: мы с помощью вентилятора-имитатора задаем силу ветра приближая и удаляя его от вентилятора, представляющего ВЭУ. На компьютере мы получаем таблицу зависимости мощности ветра и получаемого напряжения электрического тока.

По результатам эксперимента получили график зависимость мощности энергии вырабатываемой ВЭУ от силы ветра:

Мы установили, что потенциально энергетически выгодной является установка ВЭУ в таких местах, где среднегодовые скорости ветра превышают определенную величину и имеют часто повторяющуюся величину скоростей в диапазоне от 4 м/с до 9 м/с.

б) Для более полного использования энергии ветровое колесо должно занимать определенное положение относительно ветрового потока, ветровые двигатели многих типов оборудуют системами автоматической ориентации, чтобы плоскость вращения колеса была перпендикулярна направлению скорости ветра.

В эксперименте изменяли угол направления ветра, смещая вентилятор-имитатор под углом к ВЭУ. При этом на компьютере мы получаем таблицу мощности вырабатываемой энергии от угла поворота вентилятора-имитатора.

По результатам эксперимента получаем график зависимости мощности вырабатываемой ВЭУ энергии от угла направления ветра.

в) Еще одна возможность эксперимента заключалась в запасании энергии полученной от ВЭУ в аккумуляторах. Для этого на установке есть тумблер по переключению подачи энергии и аккумуляторы.

Это актуально в связи с перерывами в работе ВЭУ из-за отсутствия ветра или понижения силы ветра, и для потребителя является приемлемым возможность периодического использования энергии ветра, переработанного и запасенного заранее в периоды работы ВЭУ.

Фото 1. (Механизм подъема грузов)

Фото 2. (Работа радиостанции)

Энергия ветра преобразуется в механическую энергию.

При хорошей мощности ветра можно поймать различные радиостанции.

Датчики света показывают зависимость напряжения от мощности ветра. Сегодня ветровая установка представляет собой ветряное колесо, устанавливаемое достаточно высоко (50-100 метров) над землей, так как скорость ветра возрастает с высотой. Диаметр ветряного колеса в проектных разработках в различных странах составляет 30-100 метров. Такие большие размеры связаны с желанием получить большую мощность одного агрегата, так как стоимость электроэнергии уменьшается с ростом мощности.

Солнечная энергия является экологически чистой энергией. Эксперты утверждают, что станция может производить достаточно энергии для снабжения 8 тысяч жилищ. Ряды вырабатывающих электроэнергию солнечных панелей занимают площадь около 60 га в самой солнечной европейской долине на юге Португалии.

Солнечные батареи просты и удобны в использовании, их можно устанавливать где угодно: на крышах и стенах жилых и производственных помещений, на специально оборудованных открытых площадках в регионах с большим числом солнечных дней (например, в пустынях) и даже вшивать в одежду (Рисунок 7).

Испанская компания Sun Red разработала проект мотоцикла, использующего для передвижения энергию Солнца. Поскольку пространства для размещения солнечных батарей на двухколесной машине немного, в Sun Red предусмотрели раздвижной кожух из фотоэлементов, закрывающий водителя (Рисунок 8).

Существуют самолеты, например именуемый Solar Impulse, создателем которого является Бертранд Пиккард, которые летают исключительно за счет солнечной энергии (Рисунок 9).

2) Экспериментальная модель солнечной станции (СЭС).

Она состоит из фотоэлемента, который освещается лампой имитирующей солнце. Фотоэлемент имитирует работу Солнечной электростанции (СЭС). Все данные моделируем с помощью компьютер (Рисунок 10) а, так же как и для ВЭУ.

Мы изучили три зависимости и получили следующие результаты.

а) Мощность вырабатываемой энергии зависит СЭС от времени суток. Угол положение лампы можно менять, тем самым, имитируя изменение времени суток.

б) Мощность вырабатываемой энергии СЭС зависит от широты местности. Изменяя расстояние до фотоэлемента, мы как бы измененяем широту местности, где находится СЭС.

(расстояние до фотоэлемента)

в) Мощность вырабатываемой энергии СЭС зависит от времени года. Изменяя яркость лампы, мы как бы изменяем время года.

Так же как для ВЗУ, энергия солнца может запасаться в аккумуляторах и использоваться для разных целей. Солнечная энергия преобразуется в механическую энергию для подъёма грузов, в электроэнергию для работы электрических приборов. Также можно преобразовать энергию для работы радио. В нашем эксперименте приемник ловит частоты радиостанций.

3) Проблемы применения фотоэлементов.

Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т.д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30-50 лет), и массовое применение поставит в ближайшее же время сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения. Однако, в последнее время начинает активно развиваться производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния. Поэтому тонкоплёночные фотоэлементы дешевле в производстве, более экологичны, но пока имеют меньшее распространение.

3. Профессии, связанные с использование чистых источников энергии

Современному человеку за жизнь придется много раз менять виды деятельности, осваивать новые профессии, поэтому ему необходимо сориентироваться в многообразии профессий.

Профессии рассматриваются на четырех этапах, связанных с реализацией станции:

проектирование (инженер-электромеханик, авиационный инженер, инженер-геодезист);

установка (техник по установке, электротехник, вышкомонтажник) (Рисунок 11);

техническое обслуживание (диспетчер энергосистемы);

эксплуатация станций (техник по эксплуатации).

Высококвалифицированный специалист, обладающий глубокими знаниями по теоретической электронике, теории автоматического регулирования, промышленной электронике и вычислительной технике, умеет разбираться в сложнейших чертежах и схемах (Рисунок 12).

Инженер-геодезист занимается составлением карт и планов местности. Он настраивает геодезические приборы, обрабатывает результаты съемки, производит необходимые вычисления, определяет место установки ВЭУ и солнечных станций.

3.2. Техническое обслуживание:

Диспетчер энергосистемы обеспечивает безаварийную работу энергосистемы, наблюдает за панелью, отражающей работу системы и сохраняет готовность к устранению возможных аварий (Рисунок 13).

3.3. Эксплуатация электростанций.

Техник по эксплуатации.

Техник по эксплуатации определяет потенциальные возможности эксплуатации ВЭУ, ветровой режим хозяйственно-экономические условия эксплуатации, эффективность ветряного двигателя.

Человечеству необходимо уже сейчас, не растратив природных богатств, перейти на чистые источники энергии. Их надо рассматривать не с точки зрения конкурентной способности по сравнению с традиционными способами энергетики, а отвести роль важного, иногда вспомогательного направления, способного эффективно дополнять уже используемые энергетические средства и заменять их.

5. Список используемой литературы

1. М.А.Станкович, Э.Э.Шпильрейн. “Энергетика. Проблемы и перспективы”. Издательство. Москва, Энергия, 1981.

2. Б.М Берковский, В.А.Кузьминов. “Возобновляемые источники на службе у человечества” М: Изд-во “Мир”. 1976. 295 с.

3. Глобальная энергетическая проблема / Под общ. ред. И.Д. Иванова.- М.: Мысль, 198.

4. Краффт А.Эрике. Будущее космической индустрии М.: Машиностроение.1979 г.

5. Дж.Твайделл, А.Уэйр. “Возобновляемые источники энергии”. Издательство: М.: Энергоатомиздат, год: 1990.

6. Б.Бринкворт “Солнечная энергия для космоса”.

7. Я.И. Шефтер “Использование энергия ветра”. М.: Энергоатомиздат, 1983 г.

8. Энциклопедический словарь А.Б. Мигдала. София: Наука и изкуство, 1990.

Чистые источники энергии


Занятие знакомит с различными видами получения энергии, деления природных источников энергии на возобновляемые и невозобновляемые. Экспериментально исследуется два вида чистых источников энергии на моделях ветроэнергетической установки и солнечной электростанции.

Оно и понятно: Москва по своим климатическим условиям - не самый подходящий для велосипедистов город. Но сейчас, в начале лета, благоприятное время вспомнить легкий и экологически чистый двухколесный транспорт.

Тем более что среди современных велосипедов встречаются очень интересные конструкции. Например, полноприводные.

Самое главное, что отличает полноприводный велосипед от обычного, - ведущее переднее колесо. Как на него передать момент? Со времен изобретения первого велосипеда этот вопрос поднимался неоднократно и… ставил в тупик многих, попутно рождая фантастические конструкции с дополнительными цепями, звездочками, карданами и другими способами механической связи. Но ведь можно сделать двухколесный транспорт гибридным! То есть заднее колесо приводится в действие традиционным образом, а переднее крутит бесщеточный электромотор, встроенный в ступицу. Электронный блок управления синхронизирует вращение обоих колес путем автоматической регулировки угловой скорости электромотора. Запас электро­энергии велосипедист везет в аккумуляторе, который размещается либо на раме, на багажнике над задним колесом, либо в рюкзаке за спиной. Плюсы такого решения очевидны, минусы - вес и цена. Из-за аккумулятора и электромотора модели с алюминиевой рамой весят 20–22 кг.

Есть много разнообразных конструкций, отличающихся в первую очередь двухколесной «базой». В зависимости от нее все машины можно разделить на «внедорожники» и «паркетники». Последние, как водится в наши дни, составляют большинство и предназначаются… для пенсионеров. В крайнем случае - для жителей городов, выстроенных на крутых холмах. Дело в том, что электромотор не только повышает проходимость, но и здорово снижает физические нагрузки на организм велосипедиста. И это второе качество на асфальтированных велодорожках выходит на первый план. Тем более что для преодоления бездорожья «велопаркетники» действительно не предназначены. О каком офф-роуде можно говорить всерьез при дамской раме, одной звездочке и гладких шинах? Другое дело - веловездеходы, построенные на базе горных моделей с одной или даже двумя подвесками. Они отличаются не только более прочной рамой и «зубастыми» колесами, но и электромотором повышенной мощности. В то время как «паркетники» по большей части оснащают 24-вольтовыми двигателями мощностью 180–240 Вт, на «внедорожники» ставят только 250-ваттные электромоторы, работающие от 36-вольтовой батареи емкостью 10 Ач.

Внедорожные модели оснащают постоянным полным приводом. Электромотор вступает в действие, как только начинаешь крутить педали. На «паркетниках» же переднее колесо подключается, если нажать специальный рычажок.

Логика, видимо, такова: горные велосипеды не используют на ровных асфальтированных дорожках, полный привод им объективно нужен всегда, а другие модели требуют его изредка, к примеру, на подъемах. С другой стороны, part-time существенно увеличивает автономность электровелосипеда, что для «внедорожника» тоже немаловажно. Особенно если до места покатушек надо еще доехать по обычному шоссе. Так что для экономии энергии тут приходится просто отключать провода от батареи. Так почему бы тогда не вывести «главный тумблер» на руль? Вопросы автономности, кстати, на этом не заканчиваются. Гибридные велосипеды почему-то в принципе не оснащаются генератором, который подзаряжал бы аккумулятор во время долгих поездок по ровной дороге. А если этот генератор был бы совмещен с мотором переднего колеса и дополнен соответствующим «отделом мозга», то подзаряжать батарею можно было бы автоматически в зависимости от режима движения. А на спусках, кроме того, стало бы возможным реализовать идею торможения двигателем.

Впрочем, все это из области «если бы да кабы». А пока запасенной в аккумуляторе энергии хватает максимум на два часа покатушек по горным тропам. Хорошо, что у меня электричество закончилось, когда для возвращения надо было лишь спуститься с вершины. А если бы предстояло еще несколько подъемов, которые - я проверял - без «переднего моста» мне были просто не по силам?

Все процессы в биосфере взаимосвязаны. Человечество – лишь незначительная часть биосферы, а человек является лишь одним из видов органической жизни – Homo sapiens (человек разумный). Разум выделил человека из животного мира и дал ему огромное могущество. Человек на протяжении веков стремился не приспособиться к природной среде, а сделать ее удобной для своего существования. Теперь мы осознали, что любая деятельность человека оказывает влияние на окружающую среду, а ухудшение состояния биосферы опасно для всех живых существ, в том числе и для человека. Всестороннее изучение человека, его взаимоотношений с окружающим миром привели к пониманию, что здоровье – это не только отсутствие болезней, но и физическое, психическое и социальное благополучие человека. Здоровье – это капитал, данный нам не только природой от рождения, но и теми условиями, в которых мы живем.

В наш стремительный век человек должен многое успевать

Как это сделать? Необходимо передвижение выручает автомобиль.

Удобно, быстро, комфортно только все это очень опасно для здоровья человека. Ежегодный экологический ущерб, связанный с работой автомобильного транспорта, составляет около 6,3 млрд долларов США.

Выбросы токсичных веществ от функционирования автомобильного транспорта /по данным Минтранса России, 2000 г/ составили около 12,4 млн тонн.

Прогноз показывает, что к 2010 году ущерб, связанный с загрязнением окружающей среды транспортом может вырасти в России как минимум на 28-30 %.

Сегодня уже нужны целенаправленные природоохранные меры по защите окружающей среды.

И одна из них: это использование более экологически чистых видов транспорта. Например, велосипеда.

В долгой биографии велосипеда бывали времена, когда скептики заявляли, что он себя изжил и обречен на забвение, по крайней мере в крупных городах. Но затем жители мегаполисов вновь обращались к двухколесному другу как верному средству оздоровления, спасителю от губительных издержек малоподвижного образа жизни и неразрешимых транспортных проблем. А в малых городах и селах от велосипеда никто никогда не отворачивался.

Ныне мир переживает ренессанс увлечения велосипедом. Ширится круг его приверженцев всех возрастов и профессий вплоть до президентов и премьер – министров, не говоря уже об увлечении им в детской и молодежной среде, развивается велоспорт улучшается экология городов и сел, укрепляется здоровье людей.

Ясным утром вдоль дороги

На траве блестит роса.

По дороге едут ноги и бегут два колеса.

У загадки есть овеет, это мой

(велосипед)

«Велосипед – транспортное средство, имеющее два колеса или более и приводимое в движение мускульной силой людей, находящихся на нем».

(ПДД РФ (п. 1. 2))

Велосипед в дословном переводе с латыни (велокс – быстрый, педис – ноги) означает быстроног.

Он стал увлечением и верным другом множества людей:

Солнце на спицах,

Синева над головой,

Ветер нам в лица,

Обгоняем шар земной.

Ветер и версты,

Убегающие вдаль,

Сядешь и просто

Нажимаешь на педаль.

Велосипед - это транспорт, это средство закалки, укрепления здоровья, развития физических и волевых качеств личности.

С помощью велосипеда всегда можно организовать спортивные занятия, активный отдых, увлекательный досуг детей и подростков.

Кто придумал велосипед?

Итальянцы утверждают, что велосипед изобрели более 2000 лет назад. Сначала это была повозка с управляемым колесом, затем двухколесный деревянный самокат, затем деревянный велосипед. Железный велосипед впервые в мире появился в России в 1800 г. Его создал уральский мастер Петр Артамонов, он приехал на нем в Москву и показал его во время коронации царя. Но это изобретение не нашло применения в России, его забыли.

Но в Европе не забыли

Затем (в 1813 г.) немецкий лесничий Драйс изобрел велосипедный руль. Сам же велосипед был тяжелым, неуклюжим (нужно было отталкиваться от земли ногами). Дальзель придумал педали для ног.

Его изобретение заметили, появилось еще одно колесо – трехколесный велосипед (его основатели фабриканты игрушек).

В Европе железный велосипед построили в 1865 г. (французы механики Мишо и Лальман), но он оказался очень тяжелым и при езде на нем сильно трясло, его называли «Костотряс».

Затем англичанин Коупер, применим шариковые подшипники.

Переднее колесо было очень большим (чтобы увеличить скорость) и велосипедистам было трудно доставать до педалей. Конструктор Леонардо да Винчи – придумал шарнирные цепи. В 1884 г. Появились первые велосипеды с колесами, длинной рамой и цепной передачей на заднюю ось. Пневматические шины придумал в 1885 г. Шотландский ветеринар Данлоп. Велосипед стал намного легче.

В 1894 г. Фирма «Рэлей» выпустила велосипед с привычными для нас ромбовидными контурами рамы.

В 1897 г. Французский инженер Моро придумал втулку со свободным ходом, которая позволила двигаться по инерции, временно прекращая работу педали.

С тех пор велосипед все время усовершенствуется Появились специальные грузовые, армейские и многие другие модели. В спорт велосипед пришел в 1868 г. (в Париже состоялись первые гонки).

Как выбрать велосипед

Прежде чем выбрать модель велосипеда, надо определить какой цели будет служить:

Для спорта (гоночный)

Для прогулок (горный)

Для развлечений (ВМХ – мото – экстрим)

Для повседневного передвижные (дорожный, складной, «гибрид» - «помесь» шоссейного с горным).

Кроме этого необходимо продумать:

Каков предполагаемый дорожный профиль;

Каково качество дорожного покрытия;

Каким будет скоростной режим;

В какую погоду будет происходить езда.

Требования к безопасности езды:

Безопасность эксплуатации (травмобезопасность);

Надежность тормозов, других узлов и механизмов;

Прочность;

Соответствие росту предполагаемого владельца и возможность быстрой регулировки по нему;

Удобство посадки, размещения во время езды и управления механизмами в движении;

Возможность установки приборов освещения и сигнализации для езды в темное время;

Предохранение от загрязнения одежды смазочными материалами с деталей велосипеда и брызг от колес в дождливую погоду;

Легкость и плавность хода (отсутствие тряски);

Проходимость по плохим дорогам;

Шум в движении;

Периодичность и трудоемкость технического обслуживания;

Внешний вид, качество и способность отделки и окраски;

Общие габаритные размеры при эксплуатации и хранении.

Но есть и недостатки у велосипеда:

Зависимость от погодных условий /но уже есть веломобили – транспортные средства, имеющие более 2 колес/.

Опасность для детей: на 1 млн км велопробега приходиться около двух ДТП с травмами 7-8 летних детей. /сокращается риск с увеличением возраста с 7 до 15 лет. (Дети ездят на велосипедах больше, чем взрослые)/.

ПДД для велосипедистов

Правилами дорожного движения предусмотрено: управлять велосипедом можно только при достижении 14 лет.

Запрещается:

Ездить по тротуарам, пешеходным дорожкам;

Ездить, не держась за руль;

Перевозить пассажиров, груз, который выступает более чем на 0,5 метра по длине и ширине за габариты велосипеда;

Поворачивать налево или разворачиваться на дорогах с трамвайным движением и на дорогах, имеющих более одной полосы для движения в данном направлении;

Запрещается буксировка велосипедов и велосипедами.

Лучшее место для езды – спортивные площадки, уголки парка.

Как правильно ездить на велосипеде:

Ездить на велосипеде нужно в надежно застегнутом защитном шлеме. Велосипед должен иметь исправные тормоза и катафоты (отражающие элементы сзади и спереди). На велосипеде нельзя ездить вдвоем: так им сложнее управлять и поддерживать равновесие. Особенно нужно быть внимательными в темное время суток или в сумерки, когда плохо видно и потому аварии случаются чаще. Велосипед должен быть оснащен фарой. Очень опасно, управляя любым транспортным средством, слушать музыку. Во-первых, это отвлекает внимание, а во-вторых, можно не услышать предупреждающие сигналы и попасть в аварию.

Как вести себя при падении:

Не торопитесь вставать.

Осмотрите себя – нет ли кровотечений, неестественного положения рук или ног (возможны переломы).

Прислушайтесь к себе: не кружится ли голова, не тошнит ли (возможно сотрясение головного мозга).

В случае серьезных травм попросите прохожих вызвать «Скорую помощь».

Преимущества:

Физические нагрузки на организм (польза для здоровья);

Легкость преодоления автомобильных пробок;

Экологическая чистота. И этого нельзя опровергнуть. В наш век все так любят автомобили Автомобиль же является главным источником загрязнения окружающей среды.

Энергия, которую потребляет автомобильный транспорт, превышает во много раз все экологические нормы Жизнь в мегаполисах стала невыносимой: Токио, Париж, Лондон задыхаются от избытка автомобилей. В Москве более 100 дней в году смог. Избыточное количество воздуха от автомобильного выхлопа вызвало европейский потоп летом 2002 года: наводнение в Германии, Чехословакии, Франции, Италии, в Краснодарском крае, Адыгее.

Засуха и смог в центральных областях европейской части России, в Московской области. Это можно объяснить тем, что к атмосферным течениям воздушных потоков добавились мощные потоки горячего воздуха от автомобильного выхлопа СО2 и паров Н2О отработанных газов из центральной и Восточной Европы, где рост количества автомобилей превысил все допустимые нормы. Количество вредных веществ, поступающих в атмосферу, в составе отработанных газов, зависит от общего технического состояния автомобилей и особенно от двигателя – источника наибольшего загрязнения.

Структура годовых выбросов загрязняющих веществ (%) на автомобильной дороге «Русь»:

Все это приводит к развитию широкого спектра заболеваний у людей (бронхит, астма, сердечная недостаточность и др.). Страдает и экология: посыпая дороги зимой солью, происходит засоление почвы и рек – убивает все живое, губит деревья и травы.

Кроме этого транспорт является одним из основных источников шума в городах. /общий уровень шума при большой плотности транспортных потоков достигает 80дБА (при норме 55дБА)/.

Вернемся к велосипеду:

Экологическая чистота,

Здоровье; это главное преимущество ВЕЛОСИПЕДА!

Велосипедный бум в Европе:

В Берлине появились маршрутные велотакси.

В Европе велосипеды используют в полиции и других городских службах, на работу ездят на велосипедах: певица Мадонна, президент США Джордж Буш – младший, бывший премьер министр Великобритании Тони Блэр.

Дети на велосипедах приезжают в школу.

А что у насв нашей школе, в г. Белово?

Увлечение велосипедом начинается с детства: в нашей школе (из 100 опрошенных детей на велосипеде умеют кататься 96 человек). Все говорят, что это прекрасный вид спорта, очень полезен для здоровья. Но спортивной секции нет ни в поселке, ни в школе, а вот в г. Белово есть: у нас даже есть победители очень серьезных велогонок. Например: Евгений Петров (выпускник шк. №11) – чемпион участник Олимпийских игр. Сейчас Женя живет и тренируется в Греции, но часто приезжает на родину к родителям.

Зато в нашей школе в этом году прошел очень интересный праздник юных велосипедистов. Мы надеемся, что этот праздник положил новую традицию в нашей школе.

И верится, что глядя на нас – школьников, увлеченных велосипедным спортом, взрослые мамы и папы пересядут с машин на велосипеды, хотя бы в черте нашего поселка.

Тогда обязательно выиграют все: и экология нашего поселка и здоровье жителей Бачатского, Белово, Кузбасса

Заключение

Охрана природы – задача нашего века, проблема, ставшая социальной. И решать ее предстоит нам и нашим потомкам.

Экологически чистый транспорт: велосипед – одна из эффективных мер по всестороннему развитию экологически чистых видов транспорта во всем мире.

Велосипед наполняет жизнь яркими впечатлениями, радостными событиями, дает ощущения свободного птичьего полета, раскованности, умиротворяющей гармонии с окружающим миром, а самое главное укрепляет здоровье человека и не наносит вредя экологии нашего родного края.